Waste and Biomass Valorization

, Volume 10, Issue 12, pp 3753–3762 | Cite as

The Role of Enzyme Loading on Starch and Cellulose Hydrolysis of Food Waste

  • Erfaneh Salimi
  • Konstantinos Saragas
  • Mir Edris Taheri
  • Jelica Novakovic
  • Elli Maria Barampouti
  • Sofia Mai
  • Konstantinos Moustakas
  • Dimitrios Malamis
  • Maria LoizidouEmail author
Original Paper



Sugars production from secondary resources has been recognised as a strategic process unit within the valorisation routes of waste. In this context, food waste (FW) as an abundant waste stream with elevated concentrations of glucose and carbohydrates (cellulose, starch) could stand as a suitable feedstock for saccharification. To evaluate this new potential application of FW, FW enzymatic hydrolysis was investigated via non-commercial enzymes.


FW was subjected to enzymatic hydrolysis by an amylolytic and a cellulolytic formulation under different enzyme loadings. At the optimum conditions, the time course of glucose production during enzymatic hydrolysis was also studied. In order to enlighten the viability of bioethanol production process from FW, the experimental results were evaluated in terms of cost of enzymes per liter of bioethanol produced.


81% starch hydrolysis was achieved after 1 h of hydrolysis by 45 μL amylolytic enzyme NS22109/g starch at 65 °C. With regard to the effect of cellulase loading, 175 μL NS22177/g cellulose achieved 50% saccharification yield. Further increase of enzyme dosage just slightly increased the yield. More specifically, by increasing the enzyme loading 540%, the resulting saccharification efficiency increased by just 16%. Last, the enzyme cost per ethanol yield was almost 3.5 times lower when just amylolytic enzymes were used for similar ethanol yields.


Enzymatic hydrolysis of starch and cellulose present in FW proved to be technically efficient providing high yields. Nevertheless, the difference in the economic weight of the use of amylolytic and/or cellulolytic enzymes strongly influences the viability of FW valorization via bioethanol production.

Graphic Abstract


Amylase Cellulose Enzymatic hydrolysis Food waste Saccharification yield Starch 



European Union


Food waste


Glucose oxidase–peroxidase


Municipal solid waste


Response surface methodology


Unit of Environmental Science and Technology


Greenhouse gas



  1. 1.
    Fatmawati, A., Gunawan, K.Y., Hadiwijaya, F.A.: Hydrolysis of alkaline pretreated banana peel. Mater. Sci. Eng. Conf. Ser. 273(1), 012011 (2017). CrossRefGoogle Scholar
  2. 2.
    Moon, H.C., Song, I.S., Kim, J.C., Shirai, Y., Lee, D.H., Kim, J.K., Chung, S.O., Kim, D.H., Oh, K.K., Cho, Y.S.: Enzymatic hydrolysis of food waste and ethanol fermentation. Int. J. Energy Res. 33(2), 164–172 (2009)CrossRefGoogle Scholar
  3. 3.
    Carmona-Cabello, M., Garcia, I.L., Leiva-Candia, D., Dorado, M.P.: Valorization of food waste based on its composition through the concept of biorefinery. Curr. Opin. Green. Sustain. Chem. 14, 67–79 (2018)CrossRefGoogle Scholar
  4. 4.
    Ravindran, R., Jaiswal, A.K.: Exploitation of food industry waste for high-value products. Trends Biotechnol. 34(1), 58–69 (2016)CrossRefGoogle Scholar
  5. 5.
    Kumar, V., Longhurst, P.: Recycling of food waste into chemical building blocks. Curr. Opin. Green Sustain. Chem. 13, 118–122 (2018)CrossRefGoogle Scholar
  6. 6.
    Pleissner, D., Lin, C.S.K.: Valorisation of food waste in biotechnological processes. Sustain. Chem. Processes 1, 1–6 (2013)CrossRefGoogle Scholar
  7. 7.
    Cekmecelioglu, D., Uncu, O.N.: Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag. 33(3), 735–739 (2013)CrossRefGoogle Scholar
  8. 8.
    Hafid, H.S., Abdul Rahman, N., Md Shah, U.K., Samsu Baharudin, A., Zakaria, R.: Direct utilization of kitchen waste for bioethanol production by separate hydrolysis and fermentation (SHF) using locally isolated yeast. Int. J. Green Energy 13(3), 248–259 (2016)CrossRefGoogle Scholar
  9. 9.
    Hafid, H.S., Nor’Aini, A.R., Mokhtar, M.N., Talib, A.T., Baharuddin, A.S., Umi Kalsom, M.S.: Over production of fermentable sugar for bioethanol production from carbohydrate-rich malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Manag. 67, 95–105 (2017)CrossRefGoogle Scholar
  10. 10.
    Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., Lyberatos, G.: Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts saccharomyces cerevisiae and pichia stipitis. Bioresour. Technol. 263, 75–83 (2018)CrossRefGoogle Scholar
  11. 11.
    Tang, Y.Q., Koike, Y., Liu, K., An, M.Z., Morimura, S., Wu, X.L., Kida, K.: Ethanol production from kitchen waste using the flocculating yeast saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 32(11), 1037–1045 (2008)CrossRefGoogle Scholar
  12. 12.
    Uçkun Kiran, E., Liu, Y.: Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 159, 463–469 (2015)CrossRefGoogle Scholar
  13. 13.
    Anwar Saeed, M., Ma, H., Yue, S., Wang, Q., Tu, M.: Concise review on ethanol production from food waste: development and sustainability. Environ. Sci. Pollut. Res. 25(29), 28851–28863 (2018)CrossRefGoogle Scholar
  14. 14.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: National Renewable Energy Laboratory (U.S.) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP): issue date, 4/25/2008. Golden, Colo: National Renewable Energy Laboratory (2008)Google Scholar
  15. 15.
    Xiao, Z., Storms, R., Tsang, A.: A quantitative starch-iodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351(1), 146–148 (2006)CrossRefGoogle Scholar
  16. 16.
    Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  17. 17.
    Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renew. Energy 37(1), 19–27 (2012)CrossRefGoogle Scholar
  18. 18.
    Yan, S., Wang, P., Zhai, Z., Yao, J.: Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by saccharomyces cerevisiae H058. J. Chem. Technol. Biotechnol. 86(5), 731–738 (2011)CrossRefGoogle Scholar
  19. 19.
    Yan, S., Yao, J., Yao, L., Zhi, Z., Chen, X., Wu, J.: Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by saccharomyces cerevisiae H058. Braz. Arch. Biol. Technol. 55(2), 183–192 (2012)CrossRefGoogle Scholar
  20. 20.
    Mahmoodi, P., Karimi, K., Taherzadeh, M.J.: Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste. Bioresour. Technol. 261, 166–175 (2018)CrossRefGoogle Scholar
  21. 21.
    Koike, Y., An, M.Z., Tang, Y.Q., Syo, T., Osaka, N., Morimura, S., Kida, K.: Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J. Biosci. Bioeng. 108(6), 508–512 (2009)CrossRefGoogle Scholar
  22. 22.
    Kim, J.H., Lee, J.C., Pak, D.: Feasibility of producing ethanol from food waste. Waste Manag. 31(9–10), 2121–2125 (2011)CrossRefGoogle Scholar
  23. 23.
    Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R.A.: Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod. Biorefin. 4(1), 77–93 (2010)CrossRefGoogle Scholar
  24. 24.
    Pandiyan, K., Singh, A., Singh, S., Saxena, A.K., Nain, L.: Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew. Energy 132, 723–741 (2019)CrossRefGoogle Scholar
  25. 25.
    Gomes, D.G., Serna-Loaiza, S., Cardona, C.A., Gama, M., Domingues, L.: Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge. Bioresour. Technol. 267, 347–355 (2018)CrossRefGoogle Scholar
  26. 26.
    Battista, F., Bolzonella, D.: Some critical aspects of the enzymatic hydrolysis at high dry-matter content: a review. Biofuel. Bioprod. Biorefin. 12(4), 711–723 (2018)CrossRefGoogle Scholar
  27. 27.
    Chovau, S., Degrauwe, D., Van Der Bruggen, B.: Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renew. Sustain. Energy Rev. 26, 307–321 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Erfaneh Salimi
    • 1
  • Konstantinos Saragas
    • 1
  • Mir Edris Taheri
    • 2
  • Jelica Novakovic
    • 1
  • Elli Maria Barampouti
    • 1
  • Sofia Mai
    • 1
  • Konstantinos Moustakas
    • 1
  • Dimitrios Malamis
    • 1
  • Maria Loizidou
    • 1
    Email author
  1. 1.Unit of Environmental Science & Technology, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations