Modified Rice Husk Silica from Biowaste: An Efficient Catalyst for Transesterification of Diethyl Malonate and Benzyl Alcohol

  • A. Selva Priya
  • K. R. Sunaja DeviEmail author
  • K. Karthik
  • S. Sugunan
Original Paper


Molybdenum and lanthanum oxide modified silica-based catalysts were prepared from the agricultural waste rice husk. These synthesized catalysts were characterized by various spectroscopic and non-spectroscopic techniques. The catalytic performance was investigated by transesterification reaction between diethyl malonate and benzyl alcohol in the liquid phase using modified silica as a heterogeneous catalyst. Molybdenum modified silica-based catalyst showed the highest conversion efficiency of 95.6% and selectivity of 96.8% for dibenzyl malonate. The reaction conditions were optimized to give maximum efficiency with the highest selectivity in a solvent-free green method.

Graphic Abstract


Biomass Modified silica Transesterification Diethyl malonate Benzyl alcohol 



We are grateful to CHRIST (Deemed to be University), Bangalore for all the facilities and support. We are thankful to Bangalore Institute of Technology and Indian Institute of Science (IISc) Bangalore for various characterization facilities.


  1. 1.
    Shahla, S., Cheng, N.G., Yusoff, R.: An overview on transesterification of natural oils and fats. Biotechnol. Bioprocess Eng. 1(15), 891–904 (2010). CrossRefGoogle Scholar
  2. 2.
    Bittner, S., Felix, S., Authority, D., Sheva, B.: A convenient method of transesterification under neutral conditions. Tetrahedron Lett. 44, 3871–3874 (1975). CrossRefGoogle Scholar
  3. 3.
    Raghavendra, P.S., Shamshuddin, M.S.Z., Thimmaraju, N.: Vapor phase transesterification of dimethyl malonate with phenol over cordierite honeycomb coated with zirconia and its modified forms. Int. J. Chem. Mol. Eng. 9, 1383–1386 (2015). Google Scholar
  4. 4.
    Zhang, C., Li, S., Bao, S.: Sustainable synthesis of ZSM-5 zeolite from rice husk ash without addition of solvents. Waste Biomass Valoriz. (2018). Google Scholar
  5. 5.
    Andreola, F., Lancellotti, I., Manfredini, T., Bondioli, F., Barbieri, L.: Rice husk ash (RHA) recycling in brick manufactureeffects on physical and microstructural properties. Waste Biomass Valoriz. 9, 2529–2539 (2018). CrossRefGoogle Scholar
  6. 6.
    Demis, S., Tapali, J.G., Papadakis, V.G.: Plant design and economics of rice husk ash exploitation as a pozzolanic material. Waste Biomass Valoriz. 6, 843–853 (2015). CrossRefGoogle Scholar
  7. 7.
    Rosa, D.S., Vargas, B.P., Silveira, M.V., Rosa, C.H., Martins, M.L., Rosa, G.R.: On the use of calcined agro-industrial waste as palladium supports in the production of eco-friendly catalysts : rice husks and banana peels tested in the Suzuki–Miyaura reaction. Waste Biomass Valoriz. (2018). Google Scholar
  8. 8.
    Radhika, T., Sugunan, S.: Structural and catalytic investigation of vanadia supported on ceria promoted with high surface area rice husk silica. J. Mol. Catal. A Chem. 250, 169–176 (2006). CrossRefGoogle Scholar
  9. 9.
    Thimmaraju, N., Shamshuddin, S.Z.M., Pratap, S.R.: Transesterification of diethyl malonate with benzyl alcohol catalyzed by modified zirconia: kinetic study. J. Mol. Catal. A Chem. 391, 55–65 (2014). CrossRefGoogle Scholar
  10. 10.
    Saravanamurugan, S., Han, D., Koo, J., Park, S.: Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catal. Commun. 9, 158–163 (2008). CrossRefGoogle Scholar
  11. 11.
    Shah, P., Ramaswamy, A.V., Lazar, K., Ramaswamy, V.: Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl. Catal. A Gen. 273, 239–248 (2004). CrossRefGoogle Scholar
  12. 12.
    Yadav, G.D., Kadam, A.A.: Selective engineering using Mg–Al calcined hydrotalcite and microwave irradiation in mono-transesterification of diethyl malonate with cyclohexanol. Chem. Eng. J. 230, 547–557 (2013). CrossRefGoogle Scholar
  13. 13.
    Vijayasankar, A.V., Nagaraju, N.: Preparation and characterisation of amorphous mesoporous aluminophosphate and metal aluminophosphate as an efficient heterogeneous catalyst for transesterification reaction. Comptes Rendus Chim. 14, 1109–1116 (2011). CrossRefGoogle Scholar
  14. 14.
    Romero, E., Soto, R., Durán, P., Herguido, J., Peña, J.A.: Molybdenum addition to modified iron oxides for improving hydrogen separation in fixed bed by redox processes. Int. J. Hydrogen Energy. 37, 6978–6984 (2012). CrossRefGoogle Scholar
  15. 15.
    González, J., Wang, J.A., Chen, L., Manríquez, M., Salmones, J., Limas, R., Arellano, U.: Quantitative determination of oxygen defects, surface Lewis acidity, and catalytic properties of mesoporous MoO3/SBA-15 catalysts. J. Solid State Chem. 263, 100–114 (2018). CrossRefGoogle Scholar
  16. 16.
    Al-yassir, N., Mao, R.L.Van: Physico-chemical properties of mixed molybdenum and cerium oxides supported on silica—alumina and their use as catalysts in the thermal-catalytic cracking (TCC) of n-hexane. Appl. Catal. A Gen. 305(305), 130–139 (2006). CrossRefGoogle Scholar
  17. 17.
    Sugunan, S., Sherly, K.B.: Basicity and electron donor properties of lanthanum oxide and its mixed oxides with alumina. Indian J. Chem. 32A, 689–692 (1993)Google Scholar
  18. 18.
    Katta, L., Sudarsanam, P., Mallesham, B., Reddy, B.M.: Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid. Catal. Sci. Technol. 2, 995–1004 (2012). CrossRefGoogle Scholar
  19. 19.
    Mekhemer, G.A.H.: Surface structure and acid–base properties of lanthanum oxide dispersed on silica and alumina catalysts. Phys. Chem. Chem. Phys. 4, 5400–5405 (2002). CrossRefGoogle Scholar
  20. 20.
    Statman, D.J., Gleaves, J.T., McNamara, D., Mills, P.L., Fornasari, G., Ross, J.R.H.: TAP reactor investigation of methane coupling over samarium oxide catalysts. Appl. Catal. 77, 45–53 (1991). CrossRefGoogle Scholar
  21. 21.
    Bindig, R., Liu, D., Enke, D., Wohlrab, S., Seeburg, D., Kreft, S., Hartmann, I., Schneider, D.: Rice husk derived porous silica as support for Pd and CeO2 for low temperature catalytic methane combustion. Catalysts. 9, 26 (2019). CrossRefGoogle Scholar
  22. 22.
    Vilanculo, C.B., de Andrade Leles, L.C., da Silva, M.J.: H4SiW12O40-catalyzed levulinic acid esterification at room temperature for production of fuel bioadditives. Waste Biomass Valoriz. (2018). Google Scholar
  23. 23.
    Dintzer, T., Petit, C., Petit, P., Ersen, O., Luo, J., Chu, W.: Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles. J. Colloid Interface Sci. 482, 135–141 (2016). CrossRefGoogle Scholar
  24. 24.
    Tomke, P.D., Zhao, X., Chiplunkar, P.P., Xu, B., Wang, H., Silva, C., Rathod, V.K., Cavaco-Paulo, A.: Lipase-ultrasound assisted synthesis of polyesters. Ultrason. Sonochem. 38, 496–502 (2017). CrossRefGoogle Scholar
  25. 25.
    Reed, R.H., Chilvers, K.F., James, A.L., Morris, K.A., Oliver, M., Perry, J.D., Gould, F.K.: Evaluation of novel fluorogenic substrates for the detection of glycosidases in Escherichia coli and enterococci. J. Appl. Microbiol. 101, 977–985 (2006). CrossRefGoogle Scholar
  26. 26.
    Brandau, S., Landa, A., Franzén, J., Marigo, M., Jørgensen, K.A.: Organocatalytic conjugate addition of malonates to α, β-unsaturated aldehydes: asymmetric formal synthesis of (-)-paroxetine, chiral lactams, and lactones. Angew. Chem. Int. Ed. 45, 4305–4309 (2006). CrossRefGoogle Scholar
  27. 27.
    Hemalatha, P., Bhagiyalakshmi, M., Ganesh, M., Palanichamy, M., Murugesan, V., Jang, H.T.: Role of ceria in CO2 adsorption on NaZSM-5 synthesized using rice husk ash. J. Ind. Eng. Chem. 18, 260–265 (2012). CrossRefGoogle Scholar
  28. 28.
    Adam, F., Thankappan, R.: Oxidation of benzene over bimetallic Cu–Ce incorporated rice husk silica catalysts. Chem. Eng. J. 160, 249–258 (2010). CrossRefGoogle Scholar
  29. 29.
    Renu, P., Radhika, T., Suganan, S.: Characterization and catalytic activity of Vanadia supported on rice husk silica promoted samaria. Catal. Commun. 9, 584–589 (2008). CrossRefGoogle Scholar
  30. 30.
    Reddy, B.M., Chowdhury, B., Smirniotis, P.G.: An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts. Appl. Catal. A Gen. 219, 53–60 (2001). CrossRefGoogle Scholar
  31. 31.
    Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A., Bensitel, M.: Synthesis and FT-IR study of the acido-basic properties of the V2O5 catalysts supported on zirconia. Arab. J. Chem. 4, 313–319 (2011). CrossRefGoogle Scholar
  32. 32.
    Shamshuddin, S.Z.M., Nagaraju, N.: Vapour phase synthesis of salol over solid acids via transesterification. J. Chem. Sci. 122, 193–201 (2010). CrossRefGoogle Scholar
  33. 33.
    Thimmaraju, N., Pratap, S.R., Senthilkumar, M., Shamshuddin, S.Z.M.: Honeycomb monolith coated with Mo(VI)/ZrO2 as a versatile catalyst system for liquid phase transesterificaiton. J. Korean Chem. Soc. 56, 563–570 (2012). CrossRefGoogle Scholar
  34. 34.
    Saravanamurugan, S., Sujandi, S., Han, D.S., Koo, J.B., Park, S.E.: Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catal. Commun. 9, 158–163 (2008). CrossRefGoogle Scholar
  35. 35.
    Ajaikumar, S., Backiaraj, M., Mikkola, J.P., Pandurangan, A.: Transesterification of diethyl malonate with n-butanol over HPWA/MCM-41 molecular sieves. J. Porous Mater. 20, 951–959 (2013). CrossRefGoogle Scholar
  36. 36.
    Minchitha, K.U., Hareesh, H.N., Venkatesh, K., Shanty, M., Nagaraju, N., Kathyayini, N.: Design of sulphate modified solid acid catalysts for transesterification of diethyl malonate with benzyl alcohol. J. Nanosci. Nanotechnol. 18, 202–214 (2018). CrossRefGoogle Scholar
  37. 37.
    Biradar, A.V., Umbarkar, S.B., Dongare, M.K.: Transesterification of diethyl oxalate with phenol using MoO3/SiO2 catalyst. Appl. Catal. A Gen. 285, 190–195 (2005). CrossRefGoogle Scholar
  38. 38.
    Ma, X., Gong, J., Yang, X., Wang, S.: A comparative study of supported MoO3 catalysts prepared by the new “slurry” impregnation method and by the conventional method: their activity in transesterification of dimethyl oxalate and phenol. Appl. Catal. A Gen. 280, 215–223 (2005). CrossRefGoogle Scholar
  39. 39.
    Kotbagi, T., Nguyen, D.L., Lancelot, C., Lamonier, C., Thavornprasert, K.A., Wenli, Z., Capron, M., Jalowiecki-Duhamel, L., Umbarkar, S., Dongare, M., Dumeignil, F.: Transesterification of diethyl oxalate with phenol over sol-gel MoO3/TiO2 catalysts. Chemsuschem 5, 1467–1473 (2012). CrossRefGoogle Scholar
  40. 40.
    Cui, L.P., Li, Y.J., Li, Z., Zhao, J.F.: MoO3/SO42–TiO2 catalyst for transesterification of dimethyl cabonate with phenol. J. Cent. South Univ. 21, 1719–1724 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryCHRIST (Deemed To Be University)BangaloreIndia
  2. 2.Department of Applied ChemistryCochin University of Science and TechnologyKochiIndia

Personalised recommendations