Advertisement

Catalytic Glycolysis of Poly(ethylene terephthalate) Using Zinc and Cobalt Oxides Recycled from Spent Batteries

  • Cynthia A. Fuentes
  • María V. Gallegos
  • Juan R. García
  • Jorge Sambeth
  • Miguel A. PelusoEmail author
Original Paper
  • 6 Downloads

Abstract

The chemical recycling of polyethylene terephthalate (PET) to bis(2-hydroxyethyl) terephthalate (BHET) was studied using recycled metal oxides. Recovered zinc (RZnO) and cobalt (RCoO) oxides were obtained after a biohydrometallurgical process to recycle spent alkaline and lithium-ion batteries (LIBs), respectively. Besides, a mixed oxide (Co/RZnO) was prepared by mechanical milling of 2.5 wt% of RCoO on RZnO. The structural, textural, and acidity properties of the catalysts were analyzed by XRD, XANES, SEM, TEM, FT-IR, SBET and pyridine-TPD. The depolymerization of PET (from soft-drink bottles) was carried out with ethylene glycol (EG) at 196 °C for 2 h, using PET/catalyst and PET/EG ratios of 100:1 and 1:8, respectively. The yields of the BHET monomer in the presence of RZnO, RCoO and Co/RZnO as catalysts were 50%, 10% and 80%, respectively. The highest catalytic activity of Co/RZnO could be attributed to the presence of weak and strong acid sites, its overall higher concentration of acid sites and a synergetic effect between Co3O4 and ZnO. The obtained BHET was characterized by DSC, FT-IR, 1H NMR and 13C NMR analyses, which confirmed the purity and structure of the monomer. Metal oxides obtained using spent alkaline and lithium-ion batteries as raw materials could be used as catalysts for waste PET treatment and pure BHET monomer synthesis.

Graphic Abstract

Keywords

PET Glycolysis Recycling Spent batteries Depolymerization BHET 

Notes

Acknowledgements

The authors acknowledge the CONICET, CICPBA and UNLP (Argentina). We are thankful to P. Fetsis, and M. Theiller.

References

  1. 1.
    Payán, L., Poyatos, M.T., Muñoz, L., La Rubia, M.D., Pacheco, R., Ramos, N.: Study of the influence of storage conditions on the quality and migration levels of antimony in polyethylene terephthalate-bottled water. Food Sci. Technol. Int. 23, 318–327 (2017).  https://doi.org/10.1177/1082013217690300 CrossRefGoogle Scholar
  2. 2.
    Khoonkari, M., Haghighi, A.H., Sefidbakht, Y., Shekoohi, K., Ghaderian, A.: Chemical recycling of PET wastes with different catalysts. Int. J. Polym. Sci. (2015).  https://doi.org/10.1155/2015/124524 Google Scholar
  3. 3.
    Wang, H., Liu, Y., Li, Z., Zhang, X., Zhang, S., Zhang, Y.: Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur. Polym. J. 45, 1535–1544 (2009).  https://doi.org/10.1016/J.EURPOLYMJ.2009.01.025 CrossRefGoogle Scholar
  4. 4.
    Viante, M.F., Zanela, T.M.P., Stoski, A., Muniz, E.C., Almeida, C.A.P.: Magnetic microspheres composite from poly(ethylene terephthalate) (PET) waste: synthesis and characterization. J. Clean. Prod. 198, 979–986 (2018).  https://doi.org/10.1016/j.jclepro.2018.07.101 CrossRefGoogle Scholar
  5. 5.
    Bartolome, L., Imran, M., Lee, K.G., Sangalang, A., Ahn, J.K., Kim, D.H.: Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET. Green Chem. 16, 279–286 (2014).  https://doi.org/10.1039/c3gc41834k CrossRefGoogle Scholar
  6. 6.
    Fang, P., Liu, B., Xu, J., Zhou, Q., Zhang, S., Ma, J., Lu, X.: High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites. Polym. Degrad. Stab. 156, 22–31 (2018).  https://doi.org/10.1016/j.polymdegradstab.2018.07.004 CrossRefGoogle Scholar
  7. 7.
    Ho, L.N., Ngo, D.M., Cho, J., Jung, H.M.: Enhanced catalytic glycolysis conditions for chemical recycling of glycol-modified poly(ethylene terephthalate). Polym. Degrad. Stab. 155, 15–21 (2018).  https://doi.org/10.1016/j.polymdegradstab.2018.07.003 CrossRefGoogle Scholar
  8. 8.
    Eshaq, G., ElMetwally, A.E.: (Mg–Zn)–Al layered double hydroxide as a regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate. J. Mol. Liq. 214, 1–6 (2016).  https://doi.org/10.1016/j.molliq.2015.11.049 CrossRefGoogle Scholar
  9. 9.
    Pingale, N.D., Shukla, S.R.: Short communication. Eur. Polym. J. 44, 4151–4156 (2008).  https://doi.org/10.1016/j.eurpolymj.2008.09.019 CrossRefGoogle Scholar
  10. 10.
    Shukla, S.R., Harad, A.M.: Glycolysis of polyethylene terephthalate waste fibers. J. Appl. Polym. Sci. 97, 513–517 (2005).  https://doi.org/10.1002/app.21769 CrossRefGoogle Scholar
  11. 11.
    Al-Sabagh, A., Yehia, F., Eshaq, G., Rabie, A., El Metwally, A.: Greener routes for recycling of polyethylene terephthalate. Egypt. J. Pet. 25, 53–64 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhu, M., Li, S., Li, Z., Lu, X., Zhang, S.: Investigation of solid catalysts for glycolysis of polyethylene terephthalate. Chem. Eng. J. 185, 168–177 (2012)CrossRefGoogle Scholar
  13. 13.
    Imran, M., Kim, D.H., Al-Masry, W.A., Mahmood, A., Hassan, A., Haider, S., Ramay, S.M.: Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym. Degrad. Stab. 98, 904–915 (2013).  https://doi.org/10.1016/j.polymdegradstab.2013.01.007 CrossRefGoogle Scholar
  14. 14.
    Sardá, C., Escalante, G., García-Díaz, I., López, F.A., Fernández, P.: Luminescence and gas-sensing properties of ZnO obtained from the recycling of alkaline batteries. J. Mater. Sci. (2017).  https://doi.org/10.1007/s10853-017-1667-4 Google Scholar
  15. 15.
    Nayaka, G.P., Pai, K.V., Santhosh, G., Manjanna, J.: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. J. Environ. Chem. Eng. 4, 2378–2383 (2016).  https://doi.org/10.1016/j.jece.2016.04.016 CrossRefGoogle Scholar
  16. 16.
    Li, L., Dunn, J.B., Zhang, X.X., Gaines, L., Chen, R.J., Wu, F., Amine, K.: Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J. Power Sources. 233, 180–189 (2013).  https://doi.org/10.1016/j.jpowsour.2012.12.089 CrossRefGoogle Scholar
  17. 17.
    Hosono, H.: Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515, 6000–6014 (2007).  https://doi.org/10.1016/j.tsf.2006.12.125 CrossRefGoogle Scholar
  18. 18.
    Becheri, A., Dürr, M., Lo Nostro, P., Baglioni, P.: Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nanoparticle Res. 10, 679–689 (2008).  https://doi.org/10.1007/s11051-007-9318-3 CrossRefGoogle Scholar
  19. 19.
    Beydoun, D., Amal, R., Low, G., McEvoy, S.: Role of nanoparticles in photocatalysis. J. Nanoparticle Res. 1, 439–458 (1999).  https://doi.org/10.1023/A:1010044830871 CrossRefGoogle Scholar
  20. 20.
    Gallegos, M.V., Aparicio, F., Peluso, M.A., Damonte, L.C., Sambeth, J.E.: Structural, optical and photocatalytic properties of zinc oxides obtained from spent alkaline batteries. Mater. Res. Bull. 103, 158–165 (2018).  https://doi.org/10.1016/j.materresbull.2018.03.022 CrossRefGoogle Scholar
  21. 21.
    Ahmad, W., Noor, T., Zeeshan, M.: Effect of synthesis route on catalytic properties and performance of Co3O4/TiO2 for carbon monoxide and hydrocarbon oxidation under real engine operating conditions. Catal. Commun. 89, 19–24 (2017).  https://doi.org/10.1016/j.catcom.2016.10.012 CrossRefGoogle Scholar
  22. 22.
    Chen, Z., Wang, S., Liu, W., Gao, X., Gao, D., Wang, M., Wang, S.: Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion. Appl. Catal. A Gen. 525, 94–102 (2016).  https://doi.org/10.1016/j.apcata.2016.07.009 CrossRefGoogle Scholar
  23. 23.
    Ren, Z., Wu, Z., Song, W., Xiao, W., Guo, Y., Ding, J., Suib, S.L., Gao, P.-X.: Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability. Appl. Catal. B Environ. 180, 150–160 (2016).  https://doi.org/10.1016/j.apcatb.2015.04.021 CrossRefGoogle Scholar
  24. 24.
    Marcoccia, C.G., Peluso, M.A., Sambeth, J.E.: Synthesis, characterization and catalytic properties of cobalt oxide recovered from spent lithium-ion batteries. Mol. Catal. (2018).  https://doi.org/10.1016/j.mcat.2018.10.018 Google Scholar
  25. 25.
    Falco, L.R., Martinez, A., Di Nanno, M., Thomas, H., Curutchet, G.: Study of a pilot plant study for the recovery of metals from spent alkaline and zinc-carbon batteries with biological sulphuric acid and polythionate production. Lat. Am. Appl. Res. 44, 123–129 (2014)Google Scholar
  26. 26.
    Gallegos, M.V., Falco, L.R., Peluso, M.A., Sambeth, J.E., Thomas, H.J.: Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination. Waste Manag. 33, 1483–1490 (2013).  https://doi.org/10.1016/j.wasman.2013.03.006 CrossRefGoogle Scholar
  27. 27.
    Bertero, M., García, J.R., Falco, M., Sedran, U.: Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis. Renew. Energy 132, 11–18 (2019)CrossRefGoogle Scholar
  28. 28.
    García, M.A., Jiḿnez-Villacorta, F., Quesada, A., De La Venta, J., Carmona, N., Lorite, I., Llopis, J., Fernández, J.F.: Surface magnetism in ZnO/Co3O4 mixtures. J. Appl. Phys. 107, 1–6 (2010).  https://doi.org/10.1063/1.3294649 CrossRefGoogle Scholar
  29. 29.
    Rubio-Marcos, F., Calvino-Casilda, V., Bañares, M.A., Fernandez, J.F.: Novel hierarchical Co3O4/ZnO mixtures by dry nanodispersion and their catalytic application in the carbonylation of glycerol. J. Catal. 275, 288–293 (2010).  https://doi.org/10.1016/j.jcat.2010.08.009 CrossRefGoogle Scholar
  30. 30.
    Agawane, S.M., Nagarkar, J.M.: Synthesis of 5-substituted 1H-tetrazoles using a nano ZnO/Co3O4 catalyst. Catal. Sci. Technol. 2, 1324–1327 (2012).  https://doi.org/10.1039/C2CY20094E CrossRefGoogle Scholar
  31. 31.
    Rakibuddin, M., Ananthakrishnan, R.: Novel nano coordination polymer based synthesis of porous ZnO hexagonal nanodisk for higher gas sorption and photocatalytic activities. Appl. Surf. Sci. 362, 265–273 (2016).  https://doi.org/10.1016/j.apsusc.2015.11.206 CrossRefGoogle Scholar
  32. 32.
    Liu, Z., Deng, J., Li, F.: Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method. Mater. Sci. Eng. B. 150, 99–104 (2008).  https://doi.org/10.1016/j.mseb.2008.04.002 CrossRefGoogle Scholar
  33. 33.
    Rong, F., Zhao, J., Su, P., Yao, Y., Li, M., Yang, Q., Li, C.: Zinc–cobalt oxides as efficient water oxidation catalysts: the promotion effect of ZnO. J. Mater. Chem. A. 3, 4010–4017 (2015).  https://doi.org/10.1039/C4TA06527A CrossRefGoogle Scholar
  34. 34.
    Martin-González, M.S., García, M.A., Lorite, I., Costa-Krämer, J.L., Rubio-Marcos, F., Carmona, N., Fernández, J.F.: A solid-state electrochemical reaction as the origin of magnetism at oxide nanoparticle interfaces. J. Electrochem. Soc. 157, E31–E35 (2010).  https://doi.org/10.1149/1.3272638 CrossRefGoogle Scholar
  35. 35.
    Na, C.W., Woo, H.-S., Kim, I.-D., Lee, J.-H.: Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. Chem. Commun. 47, 5148–5150 (2011).  https://doi.org/10.1039/C0CC05256F CrossRefGoogle Scholar
  36. 36.
    Chen, C.-H.: Study of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. III. Further investigation. J. Appl. Polym. Sci. 87, 2004–2010 (2003).  https://doi.org/10.1002/app.11694 CrossRefGoogle Scholar
  37. 37.
    Duque-Ingunza, I., López-Fonseca, R., de Rivas, B., Gutiérrez-Ortiz, J.I.: Process optimization for catalytic glycolysis of post-consumer PET wastes. J. Chem. Technol. Biotechnol. 89, 97–103 (2014).  https://doi.org/10.1002/jctb.4101 CrossRefGoogle Scholar
  38. 38.
    Xi, G., Lu, M., Sun, C.: Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polym. Degrad. Stab. 87, 117–120 (2005).  https://doi.org/10.1016/j.polymdegradstab.2004.07.017 CrossRefGoogle Scholar
  39. 39.
    López-Fonseca, R., Duque-Ingunza, I., de Rivas, B., Flores-Giraldo, L., Gutiérrez-Ortiz, J.I.: Kinetics of catalytic glycolysis of PET wastes with sodium carbonate. Chem. Eng. J. 168, 312–320 (2011).  https://doi.org/10.1016/j.cej.2011.01.031 CrossRefGoogle Scholar
  40. 40.
    Fu, C.-Y.Y., Chang, C.-L.L., Hsu, C.-S.S., Hwang, B.-H.H.: Electrostatic spray deposition of La08Sr02Co02Fe08O3 films. Mater. Chem. Phys. 91, 28–35 (2005).  https://doi.org/10.1016/j.matchemphys.2004.10.041 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Investigación Y Desarrollo en Ciencias Aplicadas “Dr. Jorge J. Ronco” (CINDECA) (UNLP, CONICET, CICPBA)La PlataArgentina
  2. 2.Instituto de Investigaciones en Catálisis y Petroquímica “Ing. José Miguel Parera” INCAPE (UNL-CONICET)Santa FeArgentina

Personalised recommendations