Advertisement

Aqueous Ammonia Soaking of Wheat Straw at Ambient Temperature for Enhancing the Methane Yield: Process Optimization by Response Surface Methodology

  • Anna Lymperatou
  • Hariklia N. Gavala
  • Ioannis V. SkiadasEmail author
Original Paper
  • 12 Downloads

Abstract

Aqueous ammonia soaking (AAS) at ambient temperature was applied to wheat straw under different conditions in order to maximize the CH4 yield through mesophilic anaerobic digestion. The effects of the NH3 concentration, duration of AAS and solid-to-liquid ratio were studied on the resulting CH4 yield and the solubilization degree of the pretreated wheat straw. A strong interaction among the NH3 concentration and the duration of AAS was observed. The optimal conditions found were 18% w/w NH3, 7 days of duration and 50 g straw/L reagent, leading to a 43% increase of the CH4 yield in 17 days of digestion. Compositional analysis of the optimally-treated wheat straw revealed that a significant solubilization of hemicellulose took place during AAS together with a moderate lignin removal (9%).

Graphic Abstract

Keywords

Wheat straw Pretreatment Anaerobic digestion Optimization Aqueous ammonia soaking Methane 

Notes

Acknowledgements

The authors would like to thank Energinet.dk for the funding of the work presented here under the project AMMONOX—Ammonia for enhancing biogas yield & reducing NOx (No 12069) and the CHEC Research Center for facilitating access to Elemental Analysis equipment.

References

  1. 1.
    The European Parliament and the Council of the European Union: Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Off J Eur Union 140, 16–62 (2009)Google Scholar
  2. 2.
    Scarlat, N., Dallemand, J., Monforti-Ferrario, F., Nita, V.: The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 15, 3–34 (2015)CrossRefGoogle Scholar
  3. 3.
    Scarlat, N., Martinov, M., Dallemand, J.-F.: Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag. 30, 1889–1897 (2010)CrossRefGoogle Scholar
  4. 4.
    Croce, S., Wei, Q., D’Imporzano, G., Dong, R., Adani, F.: Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 34, 1289–1304 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, R. and Jenkins, B.M.: Commercial uses of straw., Agricultural mechanization and automation, II. In: Encyclopedia of Life Support Systems (EOLSS), pp. 308–341, UNESCO, Paris, University College Dublin, Ireland (2009)Google Scholar
  6. 6.
    Hills, D.J., Roberts, D.W.: Anaerobic digestion of dairy manure and field crop residues. Agric. Wastes 3, 179–189 (1981)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Yang, G., Feng, Y., Ren, G., Han, X.: Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 120, 78–83 (2012)CrossRefGoogle Scholar
  8. 8.
    Krishania, M., Vijay, V.K., Chandra, R.: Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57, 359–367 (2013)CrossRefGoogle Scholar
  9. 9.
    Awais, M., Alvarado-Morales, M., Tsapekos, P., Gulfraz, M., Angelidaki, I.: Methane production and kinetic modeling for co-digestion of manure with lignocellulosic residues. Energy Fuels 30, 10516–10523 (2016)CrossRefGoogle Scholar
  10. 10.
    Pavlostathis, S.G., Gossett, J.M.: Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol. Bioeng. XXVII, 334–344 (1985)CrossRefGoogle Scholar
  11. 11.
    Hashimoto, A.G.: Pretreatment of wheat straw for fermentation to methane. Biotechnol. Bioeng. XXVIII, 1857–1866 (1986)CrossRefGoogle Scholar
  12. 12.
    Alvarado-Morales, M., Tsapekos, P., Awais, M., Gulfraz, M., Angelidaki, I.: TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe 46, 155–161 (2016)CrossRefGoogle Scholar
  13. 13.
    Møller, H.B., Sommer, S.G., Ahring, B.K.: Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26, 485–495 (2004)CrossRefGoogle Scholar
  14. 14.
    Mosier, N.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)CrossRefGoogle Scholar
  15. 15.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)CrossRefGoogle Scholar
  16. 16.
    Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)CrossRefGoogle Scholar
  17. 17.
    Lymperatou, A., Gavala, H.N., Esbensen, K.H., Skiadas, I.V.: AMMONOX: ammonia for enhancing biogas yield and reducing NOx—analysis of effects of aqueous ammonia soaking on manure fibers. Waste Biomass Valoriz. 6, 449–457 (2015)CrossRefGoogle Scholar
  18. 18.
    Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016)CrossRefGoogle Scholar
  19. 19.
    Himmelsbach, J.N., Isci, A., Raman, D.R., Anex, R.P.: Design testing pilot aqueous ammonia soaking biomass pretreatment system. Appl. Eng. Agric. 25, 953–959 (2009)CrossRefGoogle Scholar
  20. 20.
    Song, Z., Yang, G., Guo, Y., Zhang, T.: Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7, 3223–3236 (2012)Google Scholar
  21. 21.
    Jurado, E., Skiadas, I.V., Gavala, H.N.: Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl. Energy 109, 104–111 (2013)CrossRefGoogle Scholar
  22. 22.
    Jurado, E., Gavala, H.N., Skiadas, I.V.: Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environ. Technol. 34, 2069–2075 (2013)CrossRefGoogle Scholar
  23. 23.
    Mirtsou-Xanthopoulou, C., Jurado, E., Skiadas, I.V., Gavala, H.N.: Effect of aqueous ammonia soaking on the methane yield and composition of digested manure fibers applying different ammonia concentrations and treatment durations. Energies 7, 4157–4168 (2014)CrossRefGoogle Scholar
  24. 24.
    Yang, D., Pang, Y., Yuan, H., Chen, S., Ma, J., Yu, L., Li, X.: Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment. Chin. J. Chem. Eng. 22, 576–582 (2014)CrossRefGoogle Scholar
  25. 25.
    Song, Z., GaiheYang, Liu, X., Yan, Z., Yuan, Y., Liao, Y.: Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9, e93801 (2014)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Merrettig-Bruns, U., Strauch, S., Kabasci, S., Chen, H.: Optimization of ammonia pretreatment of wheat straw for biogas production. J. Chem. Technol. Biotechnol. 90, 130–138 (2015)CrossRefGoogle Scholar
  27. 27.
    Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G.: The effect of aqueous ammonia soaking pretreatment on methane generation using different lignocellulosic biomasses. Waste Biomass Valoriz. 6, 281–291 (2015)CrossRefGoogle Scholar
  28. 28.
    Lymperatou, A., Gavala, H.N., Skiadas, I.V.: Optimization of aqueous ammonia soaking of manure fibers by response surface methodology for unlocking the methane potential of swine manure. Bioresour. Technol. 244, 509–516 (2017)CrossRefGoogle Scholar
  29. 29.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)CrossRefGoogle Scholar
  30. 30.
    Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass NREL/TP-510-42619. National Renewable Energy Laboratory (NREL), Colorado (2008)Google Scholar
  31. 31.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass NREL/TP-510-42618. National Renewable Energy Laboratory (NREL), Colorado (2011)Google Scholar
  32. 32.
    Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S., Scarlata, C.: Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy NREL/TP-510-42617 (2008)Google Scholar
  33. 33.
    Bjerre, A.B., Plöger, A., Simonsen, T., Woidemann, A., & Schmidt, A.S.: Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography. In: Forskningscenter Risoe. Risoe-R; No. 855(EN), Roskilde, Denmark (1996)Google Scholar
  34. 34.
    APHA: Standard Methods for the Examination of Water and Wastewater, 21st ed.: American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington DC (2005)Google Scholar
  35. 35.
    Barakat, A., Monlau, F., Steyer, J.P., Carrère, H.: Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour. Technol. 104, 90–99 (2012)CrossRefGoogle Scholar
  36. 36.
    Siddique, M.N.I., Wahid, Z.A.: Achievements and perspectives of anaerobic co-digestion: a review. J. Clean. Prod. 194, 359–371 (2018)CrossRefGoogle Scholar
  37. 37.
    Ko, J.K., Bak, J.S., Jung, M.W., Lee, H.J., Choi, I.G., Kim, T.H., Kim, K.H.: Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100, 4374–4380 (2009)CrossRefGoogle Scholar
  38. 38.
    Kim, T.H., Lee, Y.Y.: Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol. 136–140, 81–92 (2007)Google Scholar
  39. 39.
    Li, X., Kim, T.H.: Low-liquid pretreatment of corn stover with aqueous ammonia. Bioresour. Technol. 102, 4779–4786 (2011)CrossRefGoogle Scholar
  40. 40.
    Yoo, C.G., Nghiem, N.P., Hicks, K.B., Kim, T.H.: Maximum production of fermentable sugars from barley straw using optimized soaking in aqueous ammonia (SAA) pretreatment. Appl. Biochem. Biotechnol. 169, 2430–2441 (2013)CrossRefGoogle Scholar
  41. 41.
    Li, X., Kim, T.H., Nghiem, N.P.: Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresour. Technol. 101, 5910–5916 (2010)CrossRefGoogle Scholar
  42. 42.
    Ferreira, L.C., Donoso-Bravo, A., Nilsen, P.J., Fdz-Polanco, F., Pérez-Elvira, S.I.: Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour. Technol. 143, 251–257 (2013)CrossRefGoogle Scholar
  43. 43.
    Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I.: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562–2568 (2009)CrossRefGoogle Scholar
  44. 44.
    Bauer, A., Leonhartsberger, C., Bosch, P., Amon, B., Friedl, A., Amon, T.: Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. Policy 12, 153–161 (2010)CrossRefGoogle Scholar
  45. 45.
    Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R.: Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43, 273–282 (2012)CrossRefGoogle Scholar
  46. 46.
    Carrère, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, Y.: Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386–397 (2016)CrossRefGoogle Scholar
  47. 47.
    Tao, L., Aden, A., Elander, R.T., Pallapolu, V.R., Lee, Y.Y., Garlock, R.J., Balan, V., Dale, B.E., Kim, Y., Mosier, N.S., Ladisch, M.R., Falls, M., Holtzapple, M.T., Sierra, R., Shi, J., Ebrik, M.A., Redmond, T., Yang, B., Wyman, C.E., Hames, B., Thomas, S., Warner, R.E.: Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour. Technol. 102, 11105–11114 (2011)CrossRefGoogle Scholar
  48. 48.
    Kim, T.H., Lee, Y.Y.: Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 121–124, 1119–1132 (2005)CrossRefGoogle Scholar
  49. 49.
    Du, B., Sharma, L.N., Becker, C., Chen, S.F., Mowery, R.A., van Walsum, G.P., Chambliss, C.K.: Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol. Bioeng. 107, 430–440 (2010)CrossRefGoogle Scholar
  50. 50.
    Chundawat, S.P.S., Vismeh, R., Sharma, L.N., Humpula, J.F., da Costa Sousa, L., Chambliss, C.K., Jones, A.D., Balan, V., Dale, B.E.: Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour. Technol. 101, 8429–8438 (2010)CrossRefGoogle Scholar
  51. 51.
    Kort, M.J.: Reactions of free sugars with aqueous ammonia. In: Tipson, R.S., Horton, D. (eds.) Advances in carbohydrate chemistry and biochemistry, vol. 25, pp. 311–349. Academic Press, Inc., New York (1970)Google Scholar
  52. 52.
    Balan, V., da Costa Sousa, L., Chundawat, S.P.S., Humpula, J., Dale, B.E.: Overview to ammonia pretreatments for lignocellulosic biorefineries. Dyn Biochem. Process Biotechnol. Mol. Biol. 6, 1–11 (2012)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations