Advertisement

Green Synthesis, Characterization and Test of MnO2 Nanoparticles as Catalyst in Biofuel Production from Grape Residue and Seeds Oil

  • Adina Stegarescu
  • Ildiko Lung
  • Cristian Leoștean
  • Irina Kacso
  • Ocsana Opriș
  • Mihaela Diana Lazăr
  • Lucian Copolovici
  • Simona Guțoiu
  • Manuela Stan
  • Adriana Popa
  • Ovidiu Pană
  • Alin Sebastian Porav
  • Maria-Loredana SoranEmail author
Original Paper
  • 14 Downloads

Abstract

Purpose

The MnO2 nanoparticles, when used as catalyst, determine an enhanced reaction rate of the transesterifications process thus being very attractive for biodiesel production. One of the current limitations of the biofuel production by using MnO2 nanoparticles as catalyst is given by the reaction conditions. This work intends to improve the transesterification reaction efficiency through the use of a microwave field. It can generate large quantities of energy that lead to a good molecular motion thus favoring the transesterification process without altering the molecular structure. The aim of the present research is to explore the possibility of carrying out the microwave-assisted transesterification of grapes residues and seeds oil through the use of MnO2 nanoparticles as catalysts, as well as yeast (Saccharomyces cerevisiae), to efficiently obtain biofuel end product.

Methods

Both chemically and biochemically (using plant extracts) synthesized MnO2 nanoparticles were produced and characterized by different techniques like TEM, XRD, BET, XPS, VSM. The analysis of obtained biofuel was performed by GC–MS.

Results

The comparison of results revealed that the samples prepared using plant extracts have morphologic properties higher than chemically prepared sample. MnO2 nanoparticles obtained by the use of oregano extracts were further tested for microwave assisted transesterification studies.

Conclusions

The surface area of the MnO2 nanoparticles biochemically synthesized was four times higher than the nanoparticles synthesized by chemical method. The MnO2-oregano nanoparticles presented the best catalytic activity for biodiesel production as compared to the yeast catalyst. The use of microwave field for transesterification further enhances the efficiency of the process.

Graphic Abstract

Keywords

Manganese dioxide Nanoparticles Plant extracts Catalyst Biofuel 

Notes

Acknowledgements

This work was supported by the Romanian Ministry of Education and Research within the Nucleu Programme (Project PN16-30–02-05) and co-funded by the European Commission through European Regional Development Fund Structural Operational Program “Increasing of Economic Competitiveness” Priority axis 2, operation 2.1.2. Contract Number 621/2014.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to declare.

References

  1. 1.
    Hussain, S.T., Ali, S.A., Bano, A., Mahmood, T.: Use of nanotechnology for the production of biofuels from butchery waste. Int. J. Phys. Sci. 6, 7271–7279 (2011)Google Scholar
  2. 2.
    Rengasamy, M., Anbalagan, K., Mohanraj, S., Pugalenthi, V.: Biodiesel production from Pongamia pinnata oil using synthesized iron nanocatalyst. Int. J. ChemTech Res. 6, 4511–4516 (2014)Google Scholar
  3. 3.
    Chiong, M.C., Chong, C.T., Ng, J.-H., Lam, S.S., Tran, M.-V., Chong, W.W.F., Jaafar, M.N.M., Valera-Medina, A.: Liquid biofuels production and emissions performance in gas turbines: A review. Energy Convers. and Manag. 173, 640–658 (2018)CrossRefGoogle Scholar
  4. 4.
    Almazrouel, M., Janajreh, I.: Thermogravimetric study of the combustion characteristics of biodiesel and petroleum diesel. J. Thermal Anal. Calorim. 136(2), 925–935 (2019)CrossRefGoogle Scholar
  5. 5.
    Günay, M.E., Türker, L., Tapan, N.A.: Significant parameters and technological advancements in biodiesel. Fuel 250, 27–41 (2019)CrossRefGoogle Scholar
  6. 6.
    Barati, M.: From biomass to fuels: nano-catalytic processes. In: Rai, M., Silva, S.S. (eds.) Nanotechnology for Bioenergy and Biofuel Production, Green Chemistry and Sustainable Technology, pp. 195–206. Springer, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Jayandran, M., Muhamed Haneefa, M., Balasubramanian, V.: Green synthesis and characterization of manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. JAPS 5, 105–110 (2015)CrossRefGoogle Scholar
  8. 8.
    Lin, T., Yu, L., Sun, M., Cheng, G., Lan, B., Fu, Z.: Mesoporous: α-MnO2 microspheres with high specific surface area: controlled synthesis and catalytic activities. Chem. Eng. J. 286, 114–121 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, M., Wang, Y., Cheng, Z., Zhang, M., Hu, M., Li, J.: Electrospun Mn2O3 nanowrinkles and Mn3O4 nanorods: morphology and catalytic application. Appl. Surf. Sci. 313, 360–367 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang, B., Cheng, G., Ye, W., Zheng, X., Liu, H., Sun, M., Yu, L., Zheng, Y., Cheng, X.: Rational design of MnO2@MnO2 hierarchical nanomaterials and their catalytic activities. Dalton Trans. 45, 18851–18858 (2016)CrossRefGoogle Scholar
  11. 11.
    Robinson, D.M., Go, Y.B., Mui, M., Gardner, G., Zhang, Z., Mastrogiovanni, D., Garfunkel, E., Li, J., Greenblatt, M., Dismukes, G.C.: Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J. Am. Chem. Soc. 135(9), 3494–3501 (2013)CrossRefGoogle Scholar
  12. 12.
    Duana, L., Suna, B., Weia, M., Luoa, S., Pana, F., Xua, A., Li, X.: Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 285, 356–365 (2015)CrossRefGoogle Scholar
  13. 13.
    Sharma, J.K., Srivastava, P., Ameen, S., Akhtar, M.S., Singh, G., Yadava, S.: Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior. J. Colloid Interface Sci. 472, 220–228 (2016)CrossRefGoogle Scholar
  14. 14.
    Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S.: Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenolA degradation under acidic conditions. Chem. Eng. J. 370, 906–915 (2019)CrossRefGoogle Scholar
  15. 15.
    Chen, J., Lin, J.C., Purohit, V., Cutlip, M.B., Suib, S.L.: Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides. Catal. Today 33, 205–214 (1997)CrossRefGoogle Scholar
  16. 16.
    Radhakrishnan, R., Oyama, S.T.: Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: a kinetic study using in situ laser Raman spectroscopy. J. Catal. 199, 282–290 (2001)CrossRefGoogle Scholar
  17. 17.
    Miao, L., Wang, J., Zhang, P.: Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Appl. Surf. Sci. 466, 441–453 (2019)CrossRefGoogle Scholar
  18. 18.
    Wan, J., Zhou, L., Deng, H., Zhan, F., Zhang, R.: Oxidative degradation of sulfamethoxazole by different MnO2 nanocrystals in aqueous solution. J. Mol. Catal. A Chem. 407, 67–74 (2015)CrossRefGoogle Scholar
  19. 19.
    Kumar, H., Sangwan, M., Sangwan, P.: Synthesis and characterization of MnO2 nanoparticles using co-precipitation technique. IJCCE 3, 155–160 (2013)Google Scholar
  20. 20.
    Pang, S.C., Chin, S.F., Ling, C.Y.: Controlled synthesis of manganese dioxide nanostructures via a facile hydrothermal route. J. Nanomater. (2012).  https://doi.org/10.1155/2012/607870 Google Scholar
  21. 21.
    Su, P., Chu, D., Wang, L.: Studies on catalytic activity of nanostructure Mn2O3, prepared by solvent-thermal method on degrading crystal violet. Modern Appl. Sci. 4(5), 125–129 (2010)CrossRefGoogle Scholar
  22. 22.
    Khan, A.M., Fatima, N.: Biodisel synthesis via metal oxides and metal chlorides catalysis from marine alga Melanothamnus afaqhusainii. Chin. J. Chem. Eng. 24(3), 388–393 (2016)CrossRefGoogle Scholar
  23. 23.
    Singh, A.K., Fernando, S.D.: Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem. Eng. Technol. 30(12), 1716–1720 (2007)CrossRefGoogle Scholar
  24. 24.
    Raj, B.G.S., Asiri, A.M., Qusti, A.H., Wuc, J.J., Anandan, S.: Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21, 1933–1938 (2014)CrossRefGoogle Scholar
  25. 25.
    Krishnaraj C., Ji B.-J., Harper S.L., Yun S.-I: Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess Biosyst. Eng. 39, 759–772 (2016).CrossRefGoogle Scholar
  26. 26.
    El Sherbiny, S.A., Refaat, A.A., El Sheltawy, S.T.: Production of biodiesel using the microwave technique. J. Adv. Res. 1, 309–314 (2010)CrossRefGoogle Scholar
  27. 27.
    Cancela, A., Maceiras, R., Sánchez, A., Alfonsin, V., Urrejola, S.: Transesterification of marine macroalgae using microwave technology. Energy Sources Part A 38(11), 1598–1603 (2016)CrossRefGoogle Scholar
  28. 28.
    Surducan E., Surducan V.: Procedure and device for dynamic processing of materials. Romanian Patent, Romania RO-00112063B1 (2008).Google Scholar
  29. 29.
    Moon, S.A., Salunke, B.K., Alkotaini, B., Sathiyamoorthi, E., Kim, B.S.: Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 9(4), 220–225 (2015)CrossRefGoogle Scholar
  30. 30.
    Salunke, B.K., Sawant, S.S.: Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99(13), 5419–5427 (2015)CrossRefGoogle Scholar
  31. 31.
    Sun, Y., Huang, N., Sun, X., Wang, D., Zhang, J., Qiao, S., Gao, Z.: An improvement on capacitive properties of clew-like MnO2 by thermal treatment under nitrogen. Int. J. Hydrog. Energy 42, 20016–20025 (2017)CrossRefGoogle Scholar
  32. 32.
    Wang H.-Q., Yang G.-f., Li Q.-Y., Zhong X.-X., Wang F.-P., Li Z.-S., Lic Y.-H.: Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J. Chem. 35, 469–475 (2011).CrossRefGoogle Scholar
  33. 33.
    Chang, J.-K., Tsai, W.-T.: Material characterisation and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J. Electrochem. Soc. 150(10), A1333–A1338 (2003)CrossRefGoogle Scholar
  34. 34.
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)CrossRefGoogle Scholar
  35. 35.
    Liu, X.-W., Sun, X.-F., Huang, Y.-X., Sheng, G.-P., Zhou, K., Zeng, R.J., Dong, F., Wang, S.-G., Xu, A.-W., Tong, Z.-H., Yu, H.-Q.: Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res. 44, 5298–5305 (2010)CrossRefGoogle Scholar
  36. 36.
    Galakhov, V.R., Demeter, M., Bartkowski, S., Neumann, M., Ovechkina, N.A., Kurmaev, E.Z., Lobachevskaya, N.I., Mukovskii, Y.M., Mitchell, J., Ederer, D.L.: Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 65, 113102-1–113102-4 (2002)CrossRefGoogle Scholar
  37. 37.
    Ardelean, I., Muresan, N., Pascuta, P.: EPR and magnetic susceptibility studies of manganese ions in 70TeO2·25B2O3·5SrO glass matrix. Mater. Chem. Phys. 101(1), 177–181 (2007)CrossRefGoogle Scholar
  38. 38.
    Selvakumar, K., Murugesan, S., Kumar, S., Thangamuthu, R., Ganesan, K., Murugan, P., Rajput, P., Nath, Jha S., Bhattacharyya, D.: Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C. 119, 6604–6618 (2015)CrossRefGoogle Scholar
  39. 39.
    Kakazey, M., Ivanova, N., Sokolsky, G., Gonzalez-Rodriguez, J.G.: Electron paramagnetic resonance of MnO2 powders. Electrochem. Solid-State Lett. 4(5), J1–J4 (2001)CrossRefGoogle Scholar
  40. 40.
    Haynes W.M.: CRC Handbook of Chemistry and Physics, 93rd Edition, CRC Press, Boca Raton pp 4–134 (2012).Google Scholar
  41. 41.
    Gude, V.G., Patil, P., Martinez-Guerra, E., Deng, S., Nirmalakhandan, N.: Microwave energy potential for biodiesel production. Sustainable Chemical Processes 1(5), 1–31 (2013)Google Scholar
  42. 42.
    Nomanbhay S., Ong M.Y.: A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2), 57, 1–21, (2017).Google Scholar
  43. 43.
    Fernandes, P.S.R., Borges, L.E.P., de Carvalho, C.E.G., de Souza, R.O.M.A.: Microwave assisted biodiesel production from trap grease. J. Braz. Chem. Soc. 25(9), 1730–1736 (2014)Google Scholar
  44. 44.
    Dudley, G.B., Richert, R., Stiegman, A.E.: On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci. 6(4), 2144–2152 (2015)CrossRefGoogle Scholar
  45. 45.
    Lin, H.-C., Tan, C.-S.: Continuous transesterification of coconut oil with pressurized methanol in the presence of a heterogenous catalyst. J. Taiwan Inst. Chem. Eng. 45, 495–503 (2014)CrossRefGoogle Scholar
  46. 46.
    Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., Natarajan, M.: Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 16, 143–169 (2012)CrossRefGoogle Scholar
  47. 47.
    Giakoumis, E.G.: A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renew. Energy 50, 858–878 (2013)CrossRefGoogle Scholar
  48. 48.
    Fakhry, E.M., ElMaghraby, D.M.: Fatty acids composition and biodiesel characterization of Dunaliella salina. J. Water Res. Prot. 5, 894–899 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Adina Stegarescu
    • 1
  • Ildiko Lung
    • 1
  • Cristian Leoștean
    • 1
  • Irina Kacso
    • 1
  • Ocsana Opriș
    • 1
  • Mihaela Diana Lazăr
    • 1
  • Lucian Copolovici
    • 2
  • Simona Guțoiu
    • 1
  • Manuela Stan
    • 1
  • Adriana Popa
    • 1
  • Ovidiu Pană
    • 1
  • Alin Sebastian Porav
    • 1
  • Maria-Loredana Soran
    • 1
    Email author
  1. 1.National Institute for Research and Development of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.Research Center of Natural and Technical Sciences“Aurel Vlaicu” UniversityAradRomania

Personalised recommendations