Advertisement

Mycoremediation of Oily Slime Containing a Polycyclic Aromatic Hydrocarbon Mixture

  • Giuseppe Greco
  • Simone Di Piazza
  • Grazia Cecchi
  • Laura CutroneoEmail author
  • Marco Capello
  • Mirca Zotti
Original Paper
  • 12 Downloads

Abstract

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are waste products, which today represent a serious problem in the world due to their high toxicity and difficult removal from the environment. For these reasons, they represent an important and challenging topic of study and research. PAHs may be degraded through biotic pathways including both aerobic and anaerobic degradation by bacteria, fungi, cyanobacteria and eukaryotic algae. In recent decades, fungi have proven very useful in the biodegradation of some of more toxic PAHs, such as anthracene, pyrene, benzo[a]pyrene and fluorene. However, there is a lack of information from an application point of view. This paper sheds light on real-world, polluted matrices that can be degraded by fungi.

Methods

Fifteen fungal species were isolated from an oily slime derived from waste products of naval activities and screened to assess their ability to degrade PAH mixtures. The most suitable fungal strains were employed in the degradation treatment.

Results

A set of selected microfungi (including Fusarium solani along with a fungal consortium of Pseudallescheria boydii, Talaromyces amestolkiae and Sordaria fimicola) was shown to degrade PAHs better than the other fungi considered. The greatest degradation activity was observed during the first week of treatment.

Conclusions

The significant relevance of exploiting native fungi to recover marine and terrestrial areas contaminated by PAHs was shown. Moreover, the use of selected fungi isolated from the same contaminated substrate is highly effective in the mycoremediation of recalcitrant pollutants such as oily slime containing PAHs mixture.

Graphic Abstract

Keywords

Micro fungal strains Oily slime Pahs Mycoremediation 

Notes

Acknowledgements

The authors would like to thank Eurochem Italia for the collaboration in the chemical analysis. The research was performed in the framework of the PhD STAT (Scienze e Tecnologie per l’Ambiente e il Territorio) curricula in Biology Applied to Agriculture and Environment (University of Genoa, DISTAV) and partially supported with internal funds.

Supplementary material

12649_2019_802_MOESM1_ESM.docx (293 kb)
Supplementary file1 (DOCX 293 kb)

References

  1. 1.
    Clemente, A.R., Anazawa, T.A., Durrant, L.R.: Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz. J. Microbiol. 32(4), 255–261 (2001)CrossRefGoogle Scholar
  2. 2.
    Jiang, Y.F., Wang, X.T., Wang, F., Jia, Y., Wu, M.H., Sheng, G.Y., Fu, J.M.: Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai. China. Chemosphere 75(8), 1112–1118 (2009)CrossRefGoogle Scholar
  3. 3.
    Shi, Z., Tao, S., Pan, B., Fan, W., He, X.C., Zuo, Q., Xu, F.L.: Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ. Pollut. 134(1), 97–111 (2005)CrossRefGoogle Scholar
  4. 4.
    Lima, A.L.C., Farrington, J.W., Reddy, C.M.: Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ. Forensics 6(2), 109–131 (2005)CrossRefGoogle Scholar
  5. 5.
    Abdel-Shafy, H.I., Mansour, M.S.M.: A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt. J. Petroleum 25, 107–123 (2016)CrossRefGoogle Scholar
  6. 6.
    Jones, K.C., Stratford, J.A., Tidridge, P., Waterhouse, K.S., Johnston, A.E.: Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environ. Pollut. 56(4), 337–351 (1989)CrossRefGoogle Scholar
  7. 7.
    IARC (International Agency for Research on Cancer). Polynuclear aromatic compounds, part 1, chemical, environmental, and experimental data. IARC Monog. Eval. Carc. 33–451 (1983)Google Scholar
  8. 8.
    Samanta, S.K., Singh, O.V., Jain, R.K.: Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20(6), 243–248 (2002)CrossRefGoogle Scholar
  9. 9.
    Reichemberg, F., Karlson, U.G., Gustafsson, O., Long, S.M., Pritchard, P.H., Mayer, P.: Low accessibility and chemical activity of PAHs restrict bioremediation and risk of exposure in manufactured gas plant soil. Environ. Pollut. 158(5), 1214–1220 (2010)CrossRefGoogle Scholar
  10. 10.
    Radović, J.R., Domínguez, C., Laffont, K., Díez, S., Readman, J.W., Albaigés, J., Bayona, J.M.: Compositional properties characterizing commonly transported oils and controlling their fate in the marine environment. J. Environ. Monitor 14(12), 3220–3229 (2012)CrossRefGoogle Scholar
  11. 11.
    Latimer, J.S., Zheng, J.: The sources, transport, and fate of PAHs in the marine environment. In: Douben, P.E.T. (eds.) PAHs: An Ecotoxicological Perspective, pp. 9. Wiley, West Sussex, (2003)Google Scholar
  12. 12.
    Oliveira, M.B., Coutinho, J.A.P., Queimada, A.J.: Mutual solubilities of hydrocarbons and water with the CPA EoS. Fluid Phase Equilib 258(1), 58–66 (2007)CrossRefGoogle Scholar
  13. 13.
    Marini, M., Frapiccini, E.: Persistence of polycyclic aromatic hydrocarbons in sediments in the deeper area of the Northern Adriatic Sea (Mediterranean Sea). Chemosphere 90(6), 1839–1846 (2013)CrossRefGoogle Scholar
  14. 14.
    Lamichhane, S., Krishna, K.B., Sarukkalige, R.: Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere 148, 336–353 (2016)CrossRefGoogle Scholar
  15. 15.
    Matsubara, M., Lynch, J.M., De Leij, F.A.A.M.: A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme Microb. Tech. 39(7), 1365–1372 (2006)CrossRefGoogle Scholar
  16. 16.
    Wang, X.T., Miao, Y., Zhang, Y., Li, Y.C., Wu, M.H., Yu, G.: Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci. Total Environ. 447, 80–89 (2013)CrossRefGoogle Scholar
  17. 17.
    Farrington, J.W., Takada, H.: Persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and plastics: examples of the status, trend, and cycling of organic chemicals of environmental concern in the ocean. Oceanography 27(1), 196–213 (2014)CrossRefGoogle Scholar
  18. 18.
    Man, Y.B., Kang, Y., Wang, H.S., Lau, W., Li, H., Sun, X.L., Giesy, J.P., Chow, K.L., Wong, M.H.: Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J. Hazard. Mater. 261, 770–776 (2013)CrossRefGoogle Scholar
  19. 19.
    Singh, H.: Mycoremediation: fungal bioremediation. John Wiley & Sons, Hoboken (2006)CrossRefGoogle Scholar
  20. 20.
    Márquez-Rocha, F.J., Hernández-Rodríguez, V.Z., Vázquez-Duhalt, R.: Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol. Lett. 22(6), 469–472 (2000)CrossRefGoogle Scholar
  21. 21.
    Han, M.J., Choi, H.T., Song, H.G.: Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42(2), 94–98 (2004)Google Scholar
  22. 22.
    Cajthaml, T., Erbanová, P., Kollmann, A., Novotný, Č., Šašek, V., Mougin, C.: Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 53(4), 289–294 (2008)CrossRefGoogle Scholar
  23. 23.
    Patel, H., Gupte, A., Gupte, S.: Biodegradation of fluoranthene by basidiomycetes fungal isolate Pleurotus ostreatus HP-1. Appl. Biochem. Biotech. 157(3), 367–376 (2009)CrossRefGoogle Scholar
  24. 24.
    Cecchi, G., Marescotti, P., Di Piazza, S., Zotti, M.: Native fungi as metal remediators: silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). J. Environ. Sci. Heal. B 52(3), 191–195 (2017)CrossRefGoogle Scholar
  25. 25.
    Di Piazza, S., Cecchi, G., Cardinale, A.M., Carbone, C., Mariotti, M.G., Giovine, M., Zotti, M.: Penicillium expansum Link strain for a biometallurgical method to recover REEs from WEEE. Waste Manage. 60, 596–600 (2017)CrossRefGoogle Scholar
  26. 26.
    Verdin, A., Sahraoui, A.L.H., Durand, R.: Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int. Biodeter. Biodeg. 53(2), 65–70 (2004)CrossRefGoogle Scholar
  27. 27.
    Cerniglia, C.E., Sutherland, J.B.: Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis, K.N., McGenity, T.J., Meer, J.R., Lorenzo, V. (eds.) Handbook of hydrocarbon and lipid microbiology, pp. 2079–2110. Springer, Berlin (2010)CrossRefGoogle Scholar
  28. 28.
    Greco, G., Cecchi, G., Di Piazza, S., Cutroneo, L., Capello, M., Zotti, M.: Fungal characterisation of a contaminated marine environment: the case of the Port of Genoa (North-Western Italy). Webbia 73, 1–10 (2018)CrossRefGoogle Scholar
  29. 29.
    Reyes-César, A., Absalón, Á.E., Fernández, F.J., González, J.M., Cortés-Espinosa, D.V.: Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J. Microb. Biot. 30(3), 999–1009 (2014)CrossRefGoogle Scholar
  30. 30.
    Marco-Urrea, E., Garcia-Romera, I., Aranda, E.: Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol. 32(6), 620–628 (2015)CrossRefGoogle Scholar
  31. 31.
    Baborová, P., Möder, M., Baldrian, P., Cajthamlová, K., Cajthaml, T.: Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res. Microbiol. 157(3), 248–253 (2006)CrossRefGoogle Scholar
  32. 32.
    Sihag, S., Pathak, H., Jaroli, D.P.: Factors affecting the rate of biodegradation of polyaromatic hydrocarbons. Int. J. Pure App. Biosci. 2(3), 185–202 (2014)Google Scholar
  33. 33.
    Giraud, F., Guiraud, P., Kadri, M., Blake, G., Steiman, R.: Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res. 35(17), 4126–4136 (2001)CrossRefGoogle Scholar
  34. 34.
    Fernández-Luqueño, F., Valenzuela-Encinas, C., Marsch, R., Martínez-Suárez, C., Vázquez-Núñez, E., Dendooven, L.: Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ. Sci. Pollut. R. 18(1), 12–30 (2011)CrossRefGoogle Scholar
  35. 35.
    Garon, D., Sage, L., Wouessidjewe, D., Seigle-Murandi, F.: Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56(2), 159–166 (2004)CrossRefGoogle Scholar
  36. 36.
    Ye, J.S., Yin, H., Qiang, J., Peng, H., Qin, H.M., Zhang, N., He, B.Y.: Biodegradation of anthracene by Aspergillus fumigatus. J. Hazard. Mater. 185(1), 174–181 (2011)CrossRefGoogle Scholar
  37. 37.
    Greco, G., Capello, M., Cecchi, G., Cutroneo, L., Di Piazza, S., Zotti, M.: Another possible risk for the Mediterranean Sea? Aspergillus sydowii discovered in the Port of Genoa (Ligurian Sea, Italy). Mar. Pollut. Bull. 122(1–2), 470–474 (2017)CrossRefGoogle Scholar
  38. 38.
    Pitt, J.I.: The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London (1979)Google Scholar
  39. 39.
    Kieffer, E., Morelet, M., Hennebert, G.L.: Les deutéromycètes (classification et clés d'identification génétique). Du labo au terrain (1997)Google Scholar
  40. 40.
    Doveri, F.: Fungi fimicoli italici. A.M.B. Fondazione Centro Studi Micologici, Vicenza (2004)Google Scholar
  41. 41.
    Samson, R.A., Frisvad, J.C.: Penicillium subgenus Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Centraalbureau voor Schimmelcultures, Utrecht (2004)Google Scholar
  42. 42.
    Domsch, K.H., Gams, W., Anderson, T.H.: Compendium of soil fungi, 2nd taxonomically revised edition by W. Gams, IHW, Eching (2007)Google Scholar
  43. 43.
    Doyle, J., Doyle, J.L.: Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bull. 19(11), 11–15 (1987)Google Scholar
  44. 44.
    Glass, N.L., Donaldson, G.C.: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 61(4), 1323–1330 (1995)Google Scholar
  45. 45.
    White, T.J., Bruns, T., Lee, S.J.W.T., Taylor, J.L.: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols 18(1), 315–322 (1990)Google Scholar
  46. 46.
    He, Y.M., Duan, X.G., Liu, Y.S.: Enhanced bioremediation of oily sludge using co-culture of specific bacterial and yeast strains. J. Chem. Technol. Biot. 89(11), 1785–1792 (2014)CrossRefGoogle Scholar
  47. 47.
    Mao, Y., Wei, B.Y., Teng, J.W., Huang, L., Xia, N.: Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive postfermented tea from China. Food Res. Int. 99, 641–649 (2017)CrossRefGoogle Scholar
  48. 48.
    Grygier, A., Myszka, K., Rudzińska, M.: Galactomyces geotrichum - moulds from dairy products with high biotechnological potential. Acta Sci. Pol. Technol. Aliment. 16(1), 5–16 (2017)Google Scholar
  49. 49.
    Son, H., Min, K., Lee, J., Raju, N.B., Lee, Y.-W.: Meiotic silencing in the homothallic fungus Gibberella zeae. Fungal Biol. 115, 1290–1302 (2011)CrossRefGoogle Scholar
  50. 50.
    Bautista-Baños, S., Bosquez-Molina, E., Barrera-Necha, L.L.: Rhizopus stolonifer (Soft Rot). In: Barka, E.A., Clément, C. (eds.) Plant Microbe Interactions, pp. 269–289. Research Signpost, Thiruvananthapuram (2014)Google Scholar
  51. 51.
    Braun, H., Woitsch, L., Hetzer, B., Geisen, R., Zange, B., Schmidt-Heydt, M.: Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis. Int. J. Food Microbiol. 280, 10–16 (2018)CrossRefGoogle Scholar
  52. 52.
    Pardo, E., Marin, S., Sanchis, V., Ramos, A.J.: Impact of relative humidity and temperature on visible fungal growth and OTA production of ochratoxigenic Aspergillus ochraceus isolates on grapes. Food Microbiol. 22, 383–389 (2005)CrossRefGoogle Scholar
  53. 53.
    Romero-Borbón, E., Grajales-Hernández, D., Armendáriz-Ruiz, M., Ramírez-Velasco, L., Rodríguez-González, J.A., Cira-Chávez, L.A., Estrada-Alvarado, M.I., Mateos-Díaz, J.C.: Type C feruloyl esterase from Aspergillus ochraceus: A butanol specific biocatalyst for the synthesis of hydroxycinnamates in a ternary solvent system. Electron. J. Biotechn. 35, 1–9 (2018)CrossRefGoogle Scholar
  54. 54.
    Godoy, P., Reina, R., Calderón, A., Wittich, R.-M., García-Romera, I., Aranda, E.: Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ. Sci. Pollut. Res. 23(20), 20985–20996 (2016)CrossRefGoogle Scholar
  55. 55.
    Mouhamadou, B., Faure, M., Sage, L., Marcais, J., Souard, F., Geremia, R.A.: Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol. 117, 268–274 (2013)CrossRefGoogle Scholar
  56. 56.
    Ravelet, C., Krivobok, S., Sage, L., Steiman, R.: Biodegradation of pyrene by sediment fungi. Chemosphere 40(5), 557–563 (2000)CrossRefGoogle Scholar
  57. 57.
    Romero, M.C., Salvioli, M.L., Cazau, M.C., Arambarri, A.M.: Pyrene degradation by yeasts and filamentous fungi. Environ. Pollut. 117(1), 159–163 (2002)CrossRefGoogle Scholar
  58. 58.
    Wu, Y.R., Luo, Z.H., Vrijmoed, L.L.P.: Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresource Technol. 101(24), 9666–9672 (2010)CrossRefGoogle Scholar
  59. 59.
    Mineki, S., Suzuki, K., Iwata, K., Nakajima, D., Goto, S.: Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl. Aromat. Comp. 35(1), 120–128 (2015)CrossRefGoogle Scholar
  60. 60.
    Romero, M.C., Cazau, M.C., Giorgieri, S., Arambarri, A.M.: Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ. Pollut. 101(3), 355–359 (1998)CrossRefGoogle Scholar
  61. 61.
    Hong, J.W., Park, J.Y., Gadd, G.M.: Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J. Appl. Microbiol. 108(6), 2030–2040 (2010)Google Scholar
  62. 62.
    Guarro, J., Kantarcioglu, A.S., Horré, R., Rodriguez-Tudela, L.J., Estrella, C.M., Berenguer, J., De Hoog, S.G.: Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Sabouraud. 44(4), 295–327 (2006)Google Scholar
  63. 63.
    Lamaris, G.A., Chamilos, G., Lewis, R.E., Safdar, A., Raad, I.I., Kontoyiannis, D.P.: Scedosporium infection in a tertiary care cancer center: a review of 25 cases from 1989–2006. Clin. Infect. Dis. 43(12), 1580–1584 (2006)CrossRefGoogle Scholar
  64. 64.
    Janda-Ulfig, K., Ulfig, K., Cano, J., Guarro, J.: A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil. Ann. Agric. Environ. Med. 15(1), 45–49 (2008)Google Scholar
  65. 65.
    Nesky, M.A., McDougal, E.C., Peacock Jr., J.E.: Pseudallescheria boydii brain abscess successfully treated with voriconazole and surgical drainage: case report and literature review of central nervous system pseudallescheriasis. Clin. Infect. Dis. 31(3), 673–677 (2000)CrossRefGoogle Scholar
  66. 66.
    Raghukumar, C., D'Souza-Ticlo, D., Verma, A.: Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi. Crit. Rev. Microbiol. 34(3–4), 189–206 (2008)CrossRefGoogle Scholar
  67. 67.
    Acevedo, F., Pizzul, L., del Pilar Castillo, M., Cuevas, R., Diez, M.C.: Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J. Hazard. Mater. 185(1), 212–219 (2011)CrossRefGoogle Scholar
  68. 68.
    Vieira, G.A.L., Magrini, M.J., Bonugli-Santos, R.C., Rodrigues, M.V.N., Sette, L.D.: Polycyclic aromatic hydrocarbons degradation bymarine-derived basidiomycetes: optimization of the degradation process. Braz. J. Microbiol. 49(4), 749–756 (2018)CrossRefGoogle Scholar
  69. 69.
    Yu, J.: The effect of pH value on the Polycyclic Aromatic Hydrocarbons degradation in sludge during biological aerobic fermentation process. Adv. Mater. Res. 664, 72–76 (2013)CrossRefGoogle Scholar
  70. 70.
    Covino, S., Cvancarova, M., Muzikar, M., Svobodova, K., D'annibale, A., Petruccioli, M., Federici, F., Kresinova, Z., Cajthaml, T: An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices. J. Hazard. Mater. 183, 669–676 (2010)CrossRefGoogle Scholar
  71. 71.
    Kadri, T., Rouissi, T., Brar, S.K., Cledon, M., Sarma, S., Verma, M.: Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 51, 52–74 (2017)CrossRefGoogle Scholar
  72. 72.
    Rafin, C., Pottn, O., Veignie, E.: Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus Fusarium solani. Polycycl. Aromat. Comp. 21, 311–329 (2000)CrossRefGoogle Scholar
  73. 73.
    Rafin, C., Veignie, E., Fayeulle, A., Surpateanu, G.: Benzo[a]pyrene degradation using simultaneously combined chemical oxidation, biotreatment with Fusarium solani and cyclodextrins. Bioresource Technol. 100(12), 3157–3160 (2009)CrossRefGoogle Scholar
  74. 74.
    Veignie, E., Rafin, C., Woisel, P., Cazier, F.: Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ. Pollut. 129(1), 1–4 (2004)CrossRefGoogle Scholar
  75. 75.
    Chulalaksananukul, S., Gadd, G.M., Sangvanich, P., Sihanonth, P., Piapukiew, J., Vangnai, A.S.: Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiol. Lett. 262(1), 99–106 (2006)CrossRefGoogle Scholar
  76. 76.
    Anastasi, A., Coppola, T., Prigione, V., Varese, G.C.: Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J. Hazard. Mater. 165(1–3), 1229–1233 (2009)CrossRefGoogle Scholar
  77. 77.
    Balaji, V., Arulazhagan, P., Ebenezer, P.: Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J. Environ. Biol. 35(3), 521–529 (2014)Google Scholar
  78. 78.
    Chen, B., Wang, Y., Hu, D.: Biosorption and biodegradation of polycyclic aromatic hydrocarbons in aqueous solutions by a consortium of white-rot fungi. J. Hazard. Mater. 179(1–3), 845–851 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.DISTAV - University of GenoaGenoaItaly

Personalised recommendations