Advertisement

Hygric Behavior of Cement Composites Elaborated with Flax Shives, a Byproduct of the Linen Industry

  • Ali Al-Mohamadawi
  • Karim Benhabib
  • Rose-Marie Dheilly
  • Adeline GoullieuxEmail author
Original Paper
  • 12 Downloads

Abstract

The reuse of flax shives, an agricultural waste, in the elaboration of cement composites offers an interesting alternative to meet the challenge of their elimination and solve an environmental problem. The composites studied are developed by adding flax shives to Portland cement and water. Due to their honeycomb structure the flax shives are used as lightweight aggregates and provide insulating properties to the composites. However they are hygroscopic and can release water-soluble molecules responsible for setting retardation, large dimensional variations and low mechanical strengths. In previous works these drawbacks have been reduced by the development of coating processes using lime, linseed oil and paraffin as coating substances. When coated shives are used the composites exhibited compressive strength 8 to 27-fold higher, drying shrinkage two to threefold lower compared to the raw shives composite, and belong to the insulating class of the lightweight concrete. The thermal conductivity of the composites may be negatively affected by environment humidity, so their hygric behavior must be determined. The establishment of the sorption isotherms and the evaluation of the water vapor transport allow the assessment of the hygric behavior. The treatment of the flax shives involves a decrease in the moisture adsorption capacity of the composites up to 48% for a paraffin coating. The composites can be ranked in descending order of hygroscopicity: raw, lime-coated, linseed oil-coated and paraffin-coated shive composites. Only the water vapor permeability and resistance factor of the paraffin-coated shive composite are significantly lower (46%) and higher (73%) compared to those of the raw shive composite. The analytical models (GAB, Janssen and Roels) adjust the experimental results and the influence of flax shives treatment on the composites hygric behavior is demonstrated.

Graphic Abstract

Keywords

Flax shives Cement composite Sorption isotherms Permeability 

Notes

Acknowledgements

The authors are grateful to the cement company Calcia, the University of Mustansiriyah in Iraq and the Electron Microscopy Platform of the UPJV for their supports in this study.

References

  1. 1.
    FAOSTAT. Food and Agriculture Organization Of The United Nations.: https://www.fao.org/faostat/en/#data/qc/visualize (2017). Accessed 31 Jan 2019
  2. 2.
    Sankari, H.S.: Linseed (Linum usitatissimum L.) cultivars and breeding lines as stem biomass producers. J. Agron. Crop Sci. 184(4), 225–231 (2000).  https://doi.org/10.1046/j.1439-037x.2000.00375.x CrossRefGoogle Scholar
  3. 3.
    Bederina, M., Laidoudi, B., Goullieux, A., Khenfer, M., Bali, A.A., Quéneudec, M.: Effect of the treatment of wood shavings on the physico-mechanical characteristics of wood sand concretes. Constr. Build. Mater. 23(3), 1311–1315 (2009).  https://doi.org/10.1016/j.conbuildmat.2008.07.029 CrossRefGoogle Scholar
  4. 4.
    Karade, S.R.: Cement-bonded composites from lignocellulosic wastes. Constr. Build. Mater. 24, 1323–1330 (2010).  https://doi.org/10.1016/j.conbuildmat.2010.02.003 CrossRefGoogle Scholar
  5. 5.
    Khazma, M., Goullieux, A., Dheilly, R.M., Rougier, A., Quéneudec, M.: Optimization of flax shive-cementitious composites: impact of different aggregate treatments using linseed oil. Ind. Crops Prod. 61, 442–452 (2014).  https://doi.org/10.1016/j.indcrop.2014.07.041 CrossRefGoogle Scholar
  6. 6.
    Haba, B., Agoudjil, B., Boudenne, A., Benzarti, K.: Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr. Build. Mater. 154, 963–971 (2017).  https://doi.org/10.1016/j.conbuildmat.2017.08.025 CrossRefGoogle Scholar
  7. 7.
    Ledhem, A., Dheilly, R.M., Queneudec, M.: Reuse of waste oils in the treatment of wood aggregates. Waste Manage. (oxford) 20, 321–326 (2000).  https://doi.org/10.1016/s0956-053x(99)00332-3 CrossRefGoogle Scholar
  8. 8.
    Monreal, P., Mboumba-Mamboundou, L.B., Dheilly, R.M., Quéneudec, M.: Effects of aggregate coating on the hygral properties of lignocellulosic composites. Cem. Concr. Compos. 33(2), 301–308 (2011).  https://doi.org/10.1016/j.cemconcomp.2010.10.017 CrossRefGoogle Scholar
  9. 9.
    Moreira, A., António, J., Tadeu, A.: Lightweight screed containing cork granules: mechanical and hygrothermal characterization. Cem. Concr. Compos. 49, 1–8 (2014).  https://doi.org/10.1016/j.cemconcomp.2014.01.012 CrossRefGoogle Scholar
  10. 10.
    Al-Mohamadawi, A., Benhabib, K., Dheilly, R., Goullieux, A.: Influence of lignocellulosic aggregate coating with paraffin wax on flax shive and cement-shive composite properties. Constr. Build. Mater. 102, 94–104 (2016).  https://doi.org/10.1016/j.conbuildmat.2015.10.190 CrossRefGoogle Scholar
  11. 11.
    Khazma, M., Goullieux, A., Dheilly, R.M., Laidoudi, B., Quéneudec, M.: Impact of aggregate coating with a PEC elastomer on properties of lightweight flax shive concrete. Ind. Crops Prod. 33(1), 49–56 (2011)  https://doi.org/10.1016/j.indcrop.2010.08.005 CrossRefGoogle Scholar
  12. 12.
    Khazma, M., Goullieux, A., Dheilly, R.M., Quéneudec, M.: Coating of a lignocellulosic aggregate with pectin/polyethylenimin mixtures: effects on flax shive and cement-shive composite properties. Cem. Concr. Compos. 34, 223–230 (2012).  https://doi.org/10.1016/j.cemconcomp.2011.07.008 CrossRefGoogle Scholar
  13. 13.
    Khazma, M., El Hajj, N., Dheilly, R.M., Goullieux, A., Quéneudec, M.: Influence of sucrose addition on the performance of a lignocellulosic composite with a cementious matrix. Compos. A 39, 1901–1908 (2008).  https://doi.org/10.1016/j.compositesa.2008.09.014 CrossRefGoogle Scholar
  14. 14.
    Rilem Committee.: Functional Classification Of Lightweight Concrete. Recommendation LC 2 11, pp. 281–283. Rilem, Paris (1978)Google Scholar
  15. 15.
    EN 771–3. Specification for masonry units—part 3: aggregate concrete masonry units (dense and light-weight aggregates). AFNOR, France (2004)Google Scholar
  16. 16.
    Feng, C., Janssen, H., Wu, C., Feng, Y., Meng, Q.: Validating various measures to accelerate the static gravimetric sorption isotherm determination. Build. Environ. 69, 64–71 (2013).  https://doi.org/10.1016/j.buildenv.2013.08.005 CrossRefGoogle Scholar
  17. 17.
    Collet, F., Chamoin, J., Pretot, S., Lanos, C.: Comparison of the hygric behaviour of three hemp concretes. Energy Build. 62, 294–303 (2013).  https://doi.org/10.1016/j.enbuild.2013.03.010 CrossRefGoogle Scholar
  18. 18.
    Promis, G., Douzane, O., Le Tran, A.D., Langlet, T.: Moisture hysteresis influence on mass transfer through bio-based building materials in dynamic state. Energy Build. 166, 450–459 (2018).  https://doi.org/10.1016/j.enbuild.2018.01.067 CrossRefGoogle Scholar
  19. 19.
    Le Tran, A.D., Maalouf, C., Mai, T.H., Wurtz, E., Collet, F.: Transient hygrothermal behaviour of a hemp concrete building envelope. Energy Build. 42(10), 1797–1806 (2010).  https://doi.org/10.1016/j.enbuild.2010.05.016 CrossRefGoogle Scholar
  20. 20.
    Labat, M., Magniont, C., Oudhof, N., Aubert, J.E.: From the experimental characterization of the hydrothermal properties of straw-clay mixtures to the numerical assessment of their buffering potential. Build. Environ. 97, 69–81 (2016).  https://doi.org/10.1016/j.buildenv.2015.12.004 CrossRefGoogle Scholar
  21. 21.
    Belakroum, R., Gherfi, R.A., Bouchema, K., Gharbi, A., Kerboua, Y., Kadja, M., Maalouf, C., Mai, T.H., El Wakil, N., Lachi, M.: Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers. J. Build. Eng. 12, 132–139 (2017).  https://doi.org/10.1016/j.jobe.2017.05.011 CrossRefGoogle Scholar
  22. 22.
    Belayachi, N., Hoxha, D., Redikultseva, I.: Etude comparative du comportement hygrothermique des matériaux à base de fibres végétales. Rencontres universitaires de génie civil, mai 2015, Bayonne, France. https://hal.archives-ouvertes.fr/hal-01167655 (2015)
  23. 23.
    Liuzzi, S., Rubino, C., Stefanizzi, P., Petrella, A., Boghetich, A., Casavola, C., Pappalettera, G.: Hygrothermal properties of clayey plasters with olive fibers. Constr. Build. Mater. 158, 24–32 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.10.013 CrossRefGoogle Scholar
  24. 24.
    Rahim, M., Douzane, O., Le Tran, A.D., Promis, G., Laidoudi, B., Crigny, A., Dupre, B., Langlet, T.: Characterization of flax lime and hemp lime concretes: hygricproperties and moisture buffer capacity. Energy Build. 88, 91–99 (2015).  https://doi.org/10.1016/j.enbuild.2014.11.043 CrossRefGoogle Scholar
  25. 25.
    Rahim, M., Douzane, O., Le Tran, A.D., Promis, G., Langlet, T.: Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Constr. Build. Mater. 102, 679–687 (2016).  https://doi.org/10.1016/j.conbuildmat.2015.11.021 CrossRefGoogle Scholar
  26. 26.
    Sain, M., Fortier, D.: Flax shives refining, chemical modification and hydrophobisation for paper production. Ind. Crops Prod. 15(1), 1–13 (2002).  https://doi.org/10.1016/s0926-6690(01)00090-5 CrossRefGoogle Scholar
  27. 27.
    EN 197–1, Cement Part 1: Composition, specifications and conformity criteria for common cements, AFNOR, 2001, ISSN: 0005–1038Google Scholar
  28. 28.
    Khazma, M., Goullieux, A., Dheilly, R., Quéneudec, M.: Lignocellulosic light weight concrete: comparison between different coating processes. In: Wang, B., Song, J.H., Abe, H. (eds.) Advances in Eco-Materials. ISBN 978–1602316–54–3. pp. 143–151 (2007)Google Scholar
  29. 29.
    EN 196–1. Methods of testing cement. Part 1: determination of strength AFNOR; ISSN 0335–3931 (1995)Google Scholar
  30. 30.
    Korpa, A., Trettin, R.: The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freezedrying (f-drying), d-drying, p-drying and oven-drying methods. Cem. Concr. Res. 36, 634–649 (2006).  https://doi.org/10.1016/j.cemconres.2005.11.021 CrossRefGoogle Scholar
  31. 31.
    Espinosa, R.M., Franke, L.: Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cem. Concr. Res. 36(10), 1969–1984 (2006).  https://doi.org/10.1016/j.cemconres.2006.06.010 CrossRefGoogle Scholar
  32. 32.
    NF EN ISO 12572: Performance hygrothermique des matériaux et produits pour le bâtiment - détermination des propriétés de transmission de la vapeur d'eau. AFNOR, 32p. (2001)Google Scholar
  33. 33.
    Wilson, R.E.: Humidity control by means of sulfuric acid solutions with critical compilation of vapor pressure data. Ind. Eng. Chem. 13(4), 326–331 (1921).  https://doi.org/10.1021/ie50136a022 CrossRefGoogle Scholar
  34. 34.
    Kumaran, M.K.: A thermal and moisture transport property database for common building and insulating materials. ASHRAE Trans. 112(2), 485–497 (2006)Google Scholar
  35. 35.
    Poyet, S.: Experimental investigation of the effect of temperature on the first desorption isotherm of concrete. Cem. Concr. Compos. 39, 1052–1059 (2009).  https://doi.org/10.1016/j.cemconres.2009.06.019 CrossRefGoogle Scholar
  36. 36.
    Umurigirwa, B., Maalouf, C., Ali, H., Mai,T.H.: Etude numérique et experimentale du comportement hygrothermique d’un agro-composite à base de fibres de chanvre et d’amidon de blé. Conférence IBPSA France-Arras, pp.1–10 (2014)Google Scholar
  37. 37.
    Timmermann, E.: Multilayer sorption parameters: bet or gab values? Colloids Surf., A 220, 235–260 (2003)  https://doi.org/10.1016/s0927-7757(03)00059-1 CrossRefGoogle Scholar
  38. 38.
    Blahovec, J.: Sorption isotherms in materials of biological origin. Mathematical and physical approach. J. Food Eng. 65(4), 489–495 (2004)  https://doi.org/10.1016/j.jfoodeng.2004.02.012 CrossRefGoogle Scholar
  39. 39.
    Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. IUPAC commission on colloid and surface chemistry including catalysis. Pure Appl. Chem. 57(4), 603–619 (1985)  https://doi.org/10.1351/pac198557040603 CrossRefGoogle Scholar
  40. 40.
    Slanina, P.: Moisture transport in compact flat roofs. Phd thesis, Czech Technical University in Prague, Czech Republic (2009)Google Scholar
  41. 41.
    Janssen, H., Roels, S.: Qualitative and quantitative assessment of interior moisture buffering by enclosures. Energy Build. 41, 382–394 (2009).  https://doi.org/10.1016/j.enbuild.2008.11.007 CrossRefGoogle Scholar
  42. 42.
    Al-Mohamadawi, A., Benhabib, K., Goullieux, A.: Impact de l’environnement vis à vis d’éco-materiaux lignocellulosiques formulés à base d’anas de lin. Conférence Internationale Francophone NOMAD, Ecole des Mines de Douai, 5–6 novembre (2015)Google Scholar
  43. 43.
    Iglesias, H.A., Chirife, J.: BET monolayer values in dehydrated foods components. Lebensm. Wiss. Technol. 9, 107–113 (1976)Google Scholar
  44. 44.
    Alix, S., Philippe, E., Bessadok, A., Lebrun, L., Morvan, C., Marais, S.: Effect of chemical treatment on water sorption and mechanical properties of flax fibers. Bioresour. Technol. 100, 4742–4749 (2009).  https://doi.org/10.1016/j.biortech.2009.04.067 CrossRefGoogle Scholar
  45. 45.
    Celino, A., Freour, S., Jacquemin, F., Casari, P.: The hygroscopic behavior of plant fibers: a review. Front. Chem. 1(43), 1–12 (2014).  https://doi.org/10.3389/fchem.2013.00043 CrossRefGoogle Scholar
  46. 46.
    Nilsson, D., Svennerstedt, B., Wretfors, C.: Adsorption equilibrium moisture contents of flax straw, hemp stalks and reed canary grass. Biosyst. Eng. 91(1), 35–43 (2005).  https://doi.org/10.1016/j.biosystemseng.2005.02.010 CrossRefGoogle Scholar
  47. 47.
    Park, G.S.: Transport principles—solution, duffusion and permeation in polymer membranes. In: Bungay P.M., Lonsdale H.K., de Pinho M.N. (eds) Synthetic Membranes: Science, Engineering and Applications. Nato ASI Series (Series C: Mathematical and Physical Sciences), 181, pp. 57–107. Springer, Dordrecht (1986).  https://doi.org/10.1007/978-94-009-4712-2_3 CrossRefGoogle Scholar
  48. 48.
    Brunauer, S.: The Absorption of the Gases and Vapors. I. Physical adsorption. Princeton University Press, Princeton (1943)Google Scholar
  49. 49.
    Daian, J.F.: Processus de condensation et de transfert d'eau dans un matériau méso et macroporeux. Etude expérimentale du mortier de ciment. PhD Thesis, Université de Grenoble: ustmg/inpg, France (1986)Google Scholar
  50. 50.
    Leon Y Leon, C.A.: New perspectives in mercury porosimetry. Adv. Colloid Interface Sci. 76–77, 341–372 (1998).  https://doi.org/10.1016/s0001-8686(98)00052-9 CrossRefGoogle Scholar
  51. 51.
    Janssen, H., Roels, S.: The dependable characterisation of the moisture buffer potential of interior claddings. In: Proceedings of the “Nordic Symposium on Building Physics 2008”, Copenhagen, Denmark, June 16–18 (2008)Google Scholar
  52. 52.
    Règles Th-Bât - Fascicule Matériaux.: https://www.rt-batiment.fr/documents/rt2012/thbat/2-fascicule_materiaux.pdf (2017) (Accessed 31 Jan 2019)
  53. 53.
    Cerezo, V.: Propriétés mécanique, thermique et acoustique d’un materiau à base de particules végétales: approche expérimentale et modélisation théorique. PhD Thesis, MEGA-ENTPE. INSA, Lyon, France (2005)Google Scholar
  54. 54.
    Abele, C., Abraham, B., Salagnac, J.L., Fontan, J., Quenard, D., Gilliot, S., Pompeo, C.: Transferts d’humidité à travers les parois, évaluer les risques de condensation. CSTB. https://www.lamaisonpassive.fr/forum/guide_technique_transferts_d%27humidite.pdf (2009) (Accessed 31 Jan 2019)

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Unit EPROAD (EA 4669), Engineering of Materials and Process Team (IMaP)University of Picardie Jules VerneAmiensFrance

Personalised recommendations