Advertisement

Anaerobic Co-digestion of Pig Manure and Spent Coffee Grounds for Enhanced Biogas Production

  • A. Orfanoudaki
  • G. Makridakis
  • A. MaragkakiEmail author
  • M. S. Fountoulakis
  • N. G. Kallithrakas-Kontos
  • T. Manios
Original Paper
  • 16 Downloads

Abstract

The selection of appropriate co-substrates is very important to the feasibility of an anaerobic co-digestion process. A proper choice of co-substrate compositions leads to system balance and increased methane generation. Spent coffee grounds (SCG) are an unexploited material produced in large quantities which seems suitable for anaerobic digestion. During this study SCG were tested for biogas production in both batch and continuous reactors. Specifically, the biochemical methane potential of SCG was calculated in serum bottle test reactors at two different inoculum to substrate ratios (ISRs). In addition, co-digestion of SCG with liquid pig manure as co-substrate was monitored in a pilot scale continuously stirred tank reactor. Maximum methane production was similar at both ISRs, indicating no inhibition effects. Moreover, results from continuous experiments show that the methane production rate increased significantly after the addition of SCG to the digester. The reactor treating the liquid pig manure produced approximately 0.12 Lbiogas/Lreactor/d before the addition of SCG and 1.4 Lbiogas/Lreactor/d after the addition. The average removal of dissolved chemical oxygen demand increased from 20 to 40% after the addition of SCG. The concept of co-digestion could be a promising perspective for anaerobic digestion units as it increases methane production significantly.

Graphic Abstract

Keywords

Biogas Spent coffee Methane C/N ratio CSTR 

Notes

References

  1. 1.
    Kumamuru, B.: WBA Global Bioenergy Statistics 2017. World Bioenergy Association (2017). www.worldbioenergy.org
  2. 2.
    Mata-Alvarez, J., Dosta, J., Romero, M.S., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014)CrossRefGoogle Scholar
  3. 3.
    Dai, X., Li, X., Zhang, D., Chen, Y., Dai, L.: Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: the effects of pH and C/N ratio. Bioresour. Technol. 216, 323–330 (2016)CrossRefGoogle Scholar
  4. 4.
    Hagos, K., Zong, J., Li, D., Liu, C., Lu, X.: Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew. Sustain. Energy Rev. 76, 1485–1496 (2017)CrossRefGoogle Scholar
  5. 5.
    Murthy, P.S., Madhava Naidu, M.: Sustainable management of coffee industry byproducts and value addition—a review. Resour. Conserv. Recycl. 66, 45–58 (2012)CrossRefGoogle Scholar
  6. 6.
    International Coffee Association. Coffee Market Report—October 2018. https://www.ico.org/Market-Report-18-19-e.asp. Accessed 2018
  7. 7.
    Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V.: Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: evaluation of the biomethane potential. Appl. Energy 207, 166–175 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhang, L., Sun, X.: Using cow dung and spent coffee grounds to enhance the two-stage co-composting of green waste. Bioresour. Technol. 245, 152–161 (2017)CrossRefGoogle Scholar
  9. 9.
    Emmanuel, S.A., Yoo, J., Kim, E.J., Chang, J.S., Park, Y.I., Koh, S.C.: Development of functional composts using spent coffee grounds, poultry manure and biochar through microbial bioaugmentation. J. Environ. Sci. Health B 52(11), 802–811 (2017)CrossRefGoogle Scholar
  10. 10.
    Park, J., Kim, B., Lee, J.W.: In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour. Technol. 221, 55–60 (2016)CrossRefGoogle Scholar
  11. 11.
    Luz, F.C., Volpe, M., Fiori, L., Manni, A., Cordiner, S., Mulone, V., Rocco, V.: Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresour. Technol. 256, 102–109 (2018)CrossRefGoogle Scholar
  12. 12.
    Mussatto, S.I., Machado, E.M.S., Carneiro, L.M., Teixeira, J.A.: Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 92, 763–768 (2012)CrossRefGoogle Scholar
  13. 13.
    Kim, J., Kim, H., Baek, G., Lee, C.: Anaerobic co-digestion of spent coffee grounds with different waste feedstocks for biogas production. Waste Manag. 60, 322–328 (2017)CrossRefGoogle Scholar
  14. 14.
    Abouelenien, F., Namba, Y., Kosseva, M., Nishio, N., Nakashimada, Y.: Enhancement of methane production from co-digestion of chicken manure with agricultural wastes. Bioresour. Technol. 159, 80–87 (2014)CrossRefGoogle Scholar
  15. 15.
    Borja, R., Alba, J., Martin, A., Mancha, A.: Effect of organic loading rate on anaerobic digestion process of wastewaters from the washing of olives prior to the olive production process in a fluidized bed reactor. Grasas Aceites 49, 42–49 (1998)CrossRefGoogle Scholar
  16. 16.
    Pellera, F.-M., Gidarakos, E.: Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J. Environ. Chem. Eng. 4, 3217–3229 (2016)CrossRefGoogle Scholar
  17. 17.
    Raposo, F., Fernández-Cegrí, V., Rubia, M.A.D., Borja, R., Béline, F., Cavinato, C.M., Demirer, G., Fernández, B., Fernández-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., Wilde, V.: Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 86, 1088–1098 (2017)CrossRefGoogle Scholar
  18. 18.
    Pagés Díaz, J., Pereda Reyes, I., Lundin, M., Sárvári Horváth, I.: Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresour. Technol. 102, 10834–10840 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Lee, Y.W., Jahng, D.: Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour. Technol. 102, 5048–5059 (2011)CrossRefGoogle Scholar
  20. 20.
    Fountoulakis, M.S., Petousi, I., Manios, T.: Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag. 30, 1849–1853 (2010)CrossRefGoogle Scholar
  21. 21.
    Maragkaki, A., Fountoulakis, M., Kyriakou, A., Lasaridi, K., Manios, T.: Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues. Waste Manag. 71, 605–611 (2018)CrossRefGoogle Scholar
  22. 22.
    Mshandete, A., Kivaisi, A., Rubindamayugi, M., Mattiasson, B.: Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour. Technol. 95, 19–24 (2004)CrossRefGoogle Scholar
  23. 23.
    Feng, L., Luo, J., Chen, Y.: Dilemma of sewage sludge treatment and disposal in China. Environ. Sci. Technol. 49(8), 4781–4782 (2015)CrossRefGoogle Scholar
  24. 24.
    Dai, X., Hu, C., Zhang, D., Chen, Y.: A new method for the simultaneous enhancement of methane yield and reduction of hydrogen sulfide production in the anaerobic digestion of waste activated sludge. Bioresour. Technol. 243, 914–921 (2017)CrossRefGoogle Scholar
  25. 25.
    Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P.: Anaerobic codigestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew. Sustain. Energy Rev. 79, 308–322 (2017)CrossRefGoogle Scholar
  26. 26.
    Siddique, M.N.I., Wahid, Z.A.: Achievements and perspectives of anaerobic co-digestion: a review. J. Clean. Prod. 194, 359–371 (2018)CrossRefGoogle Scholar
  27. 27.
    Anggarini, S., Hidayat, N., Sunyoto, N.M.S., Wulandari, P.S.: Optimization of hydraulic retention time (HRT) and inoculums addition in wastewater treatment using anaerobic digestion system. Agric. Agric. Sci. Prog. 3, 95–101 (2015)Google Scholar
  28. 28.
    Athanasoulia, E., Melidis, P., Aivasidis, A.: Anaerobic waste activated sludge co-digestion with olive mill wastewater. Water Sci. Technol. 65, 2251–2257 (2012)CrossRefGoogle Scholar
  29. 29.
    Nagao, N., Tajima, N., Kawai, M., Niwa, C., Kurosawa, N., Matsuyama, T., Yusoff, F.M., Toda, T.: Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 118, 210–218 (2012)CrossRefGoogle Scholar
  30. 30.
    Appels, L., Baeyens, J., Degreve, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. 34(6), 755–781 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. Orfanoudaki
    • 1
    • 3
  • G. Makridakis
    • 1
  • A. Maragkaki
    • 1
    Email author
  • M. S. Fountoulakis
    • 2
  • N. G. Kallithrakas-Kontos
    • 3
  • T. Manios
    • 1
  1. 1.Department of AgricultureHellenic Mediterranean UniversityHeraklionGreece
  2. 2.Department of EnvironmentUniversity of the AegeanMytileneGreece
  3. 3.School of Mineral Resources EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations