Advertisement

Depolymerization of End-of-Life Poly(bisphenol A carbonate) via 4-Dimethylaminopyridine-Catalyzed Methanolysis

  • Christoph Alberti
  • Stephan EnthalerEmail author
Short Communication
  • 9 Downloads

Abstract

The chemical recycling, a sequence of depolymerization and polymerization reactions, of end-of-life plastics/polymers can contribute to a sustainable, resource-conserving and environmental-benign society. In this regard, we have set up a protocol for the depolymerization of end-of-life poly(bisphenol A carbonate). In more detail, applying a combination of methanol and catalytic amounts of 4-dimethylaminopyridine (DMAP) end-of-life poly(bisphenol A carbonate) was depolymerized to bisphenol A and dimethyl carbonate. With the aid of microwave heating an excellent rate of depolymerization ( > 99%) within short reaction times (5 min) and turnover frequencies up to 1164 h−1 were achieved. Moreover, it was demonstrated that phenolysis can be applied under optimized reaction conditions resulting in the formation of the mixture bisphenol A and diphenyl carbonate, which can be used for the synthesis of new poly(bisphenol A carbonate). In consequence a closed cycle for poly(bisphenol A carbonate) is feasible.

Graphic Abstract

Keywords

End-of-life poly(bisphenol A carbonate) Recycling Depolymerization Microwave Waste CDs/DVDs 

Notes

Acknowledgements

Financial support from the Universität Hamburg (UHH) is gratefully acknowledged. We thank Prof. Dr. Axel Jacobi von Wangelin, Dr. Dieter Schaarschmidt, Dr. Felix Scheliga and Melanie Hofmann (all UHH) for general discussions and support.

Supplementary material

12649_2019_794_MOESM1_ESM.doc (22.1 mb)
Supplementary material 1 (DOC 22648 kb)

References

  1. 1.
    Thompson, R.C., Swan, S.H., Moore, C.J., vom Saal, F.S.: Our plastic age. Philos. Trans. R. Soc. B 364, 1973–1976 (2009)CrossRefGoogle Scholar
  2. 2.
    Burnley, S.: The impact of the European landfill directive on waste management in the United Kingdom. Resour. Conserv. Recycl. 32, 349–358 (2001)CrossRefGoogle Scholar
  3. 3.
    Ignatyev, I.A., Thielemans, W., Vander Beke, B.: Recycling of polymers: a review. ChemSusChem 7, 1579–1593 (2014)CrossRefGoogle Scholar
  4. 4.
    Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L.: Recycling of plastic solid waste: a state of art review and future applications. Composites B 115, 409–422 (2016)CrossRefGoogle Scholar
  5. 5.
    Tukker, A.: Plastics Waste: Feedstock Recycling Chemical Recycling and Incineration. Smithers Rapra Press, Shrewsbury (1997)Google Scholar
  6. 6.
    Newborough, M., Highgate, D., Vaughan, P.: Thermal depolymerisation of scrap polymers. Appl. Therm. Eng. 22, 1875–1883 (2002)CrossRefGoogle Scholar
  7. 7.
    Brandrup, J.: Recycling and Recovery of Plastics. Hanser/Gardner, München (1996)Google Scholar
  8. 8.
    Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Current state and future prospects of plastic waste as source of fuel: a review. Renew. Sustain. Energy Rev. 50, 1167–1180 (2015)CrossRefGoogle Scholar
  9. 9.
    Christensen, T.H.: Solid Waste Technology & Management. Wiley, Chichester (2011)Google Scholar
  10. 10.
    Eriksson, O., Finnveden, G.: Plastic waste as a fuel—CO2-neutral or not? Energy Environ. Sci. 2, 907–914 (2002)CrossRefGoogle Scholar
  11. 11.
    La Mantia, F.: Handbook of Plastics Recycling. Smithers Rapra Technology, Shrewsbury (2002)Google Scholar
  12. 12.
    Friedlingstein, P., Houghton, R.A., Marland, G., Hackler, J., Boden, T.A., Conway, T.J., Canadell, J.G., Raupach, M.R., Ciais, P., Le Quéré, C.: Update on CO2 emissions. Nat. Geosci. 3, 811–812 (2010)CrossRefGoogle Scholar
  13. 13.
    Francis, R.: Recycling of Polymers: Methods Characterization and Applications. Wiley-VCH, Weinheim (2016)CrossRefGoogle Scholar
  14. 14.
    Thomas, S., Rane, A.V., Kanny, K., VK, A., Thomas, M.G.: Recycling of Polyethylene Terephthalate Bottles. William Andrew, Kidlington (2018)Google Scholar
  15. 15.
    Kim, P.J.K.: Rubber Recycling: Challenges and Developments. Royal Society of Chemistry, London (2018)CrossRefGoogle Scholar
  16. 16.
    Aguado, J., Serrano, D.P.: Feedstock Recycling of Plastic Wastes. The Royal Society of Chemistry, Cambridge (1999)Google Scholar
  17. 17.
    Lu, X.-B., Liu, Y., Zhou, H.: Learning nature: recyclable monomers and polymers. Chem. Eur. J. 24, 11255–11266 (2018)CrossRefGoogle Scholar
  18. 18.
    Rahimi, A., Garcia, J.M.: Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 46 (2017)CrossRefGoogle Scholar
  19. 19.
    Ragaert, K., Delva, L., Van Geem, K.: Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–25 (2017)CrossRefGoogle Scholar
  20. 20.
    Perugini, F., Mastellone, M.L., Arena, U.: A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Prog. 24, 137–154 (2005)CrossRefGoogle Scholar
  21. 21.
    Hopewell, J., Dvorak, R., Kosior, E.: Plastics recycling: challenges and opportunities. Philos. Trans. R Soc. B 364, 2115–2126 (2009)CrossRefGoogle Scholar
  22. 22.
    Katajisto, J., Pakkanen, T.T., Pakkanen, T.A., Hirva, P.: Ab initio study on thermal degradation reactions of polycarbonate. J. Mol. Struct. (Theochem) 634, 305–310 (2003)CrossRefGoogle Scholar
  23. 23.
    Liu, F., Li, L., Yu, S., Lv, Z., Ge, X.: Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac]. J. Hazard Mater. 189, 249–254 (2011)CrossRefGoogle Scholar
  24. 24.
    Chiu, S.T., Chen, S.H., Tsai, C.T.: Effect of metal chlorides on thermal degradation of (waste) polycarbonate. Waste Manag. 26, 252–259 (2006)CrossRefGoogle Scholar
  25. 25.
    Balart, R., Sanchez, L., Lopez, L., Jimenez, A.: Kinetic analysis of thermal degradation of recycled polycarbonate/acrylonitrile–butadiene–styrene mixtures from waste electric and electronic equipment. Polym. Degrad. Stab. 91, 527–534 (2006)CrossRefGoogle Scholar
  26. 26.
    Liu, M., Guo, J., Gu, Y., Gao, J., Liu, F.: Degradation of waste polycarbonate via hydrolytic strategy to recover monomer (bisphenol A) catalyzed by DBU-based ionic liquids under metal- and solvent-free conditions. Polym. Degrad. Stab. 157, 9–14 (2018)CrossRefGoogle Scholar
  27. 27.
    Liu, M., Guo, J., Gu, Y., Gao, J., Liu, F., Yu, S.: Pushing the limits in alcoholysis of waste polycarbonate with DBU-based ionic liquids under metal- and solvent-free conditions. ACS Sustain. Chem. Eng. 6, 13114–13121 (2018)CrossRefGoogle Scholar
  28. 28.
    Guo, J., Liu, M., Gu, Y., Wang, Y., Gao, J., Liu, F.: Efficient alcoholysis of polycarbonate catalyzed by recyclable Lewis acidic ionic liquids. Ind. Eng. Chem. Res. 57, 10915–10921 (2018)CrossRefGoogle Scholar
  29. 29.
    Emami, S., Alavi Nikje, M.M.: Benign and ecofriendly depolymerization of polycarbonate wastes into valuable diols using micro- and nano-TiO2 as the solid supports. Iran. Polym. J. 27, 275–286 (2018)CrossRefGoogle Scholar
  30. 30.
    Wang, L., Zhang, J., Hou, S., Sun, H.: A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol. Lett. 4, 530–534 (2017)CrossRefGoogle Scholar
  31. 31.
    Quaranta, E., Sgherza, D., Tartaro, G.: Depolymerization of poly(bisphenol A carbonate) under mild conditions by solvent-free alcoholysis catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate. Green Chem. 19, 5422–5434 (2017)CrossRefGoogle Scholar
  32. 32.
    Iannone, F., Casiello, M., Monopoli, A., Cotugno, P., Sportelli, M.C., Picca, R.A., Cioffi, N., Dell'Anna, M.M., Nacci, A.: Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A 426, 107–116 (2017)CrossRefGoogle Scholar
  33. 33.
    Taguchi, M., Ishikawa, Y., Kataoka, S., Naka, T., Funazukuri, T.: CeO2 nanocatalysts for the chemical recycling of polycarbonate. Catal. Commun. 84, 93–97 (2016)CrossRefGoogle Scholar
  34. 34.
    Pan, Z., Hu, Z., Shi, Y., Shen, Y., Wang, J., Chou, I.-M.: Depolymerization of polycarbonate with catalyst in hot compressed water in fused silica capillary and autoclave reactors. RSC Adv. 4, 19992–19998 (2014)CrossRefGoogle Scholar
  35. 35.
    Hatakeyama, K., Kojima, T., Funazukuri, T.: Chemical recycling of polycarbonate in dilute aqueous ammonia solution under hydrothermal conditions. J. Mater. Cycl. Waste Manag. 16, 124–130 (2014)CrossRefGoogle Scholar
  36. 36.
    Li, L., Liu, F., Li, Z., Song, X., Yu, S., Liu, S.: Hydrolysis of polycarbonate using ionic liquid [Bmim][Cl] as solvent and catalyst. Fibers Polym. 14, 365–368 (2013)CrossRefGoogle Scholar
  37. 37.
    Tsintzou, G.P., Achilias, D.S.: Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste Biomass Valoriz. 4, 3–7 (2013)CrossRefGoogle Scholar
  38. 38.
    Huang, Y., Liu, S., Pan, Z.: Effects of plastic additives on depolymerization of polycarbonate in sub-critical water. Polym. Degrad. Stab. 96, 1405–1410 (2011)CrossRefGoogle Scholar
  39. 39.
    Liu, F.-S., Li, Z., Yu, S.-T., Cui, X., Xie, C.-X., Ge, X.-P.: Methanolysis and hydrolysis of polycarbonate under moderate conditions. J. Polym. Environ. 17, 208–211 (2009)CrossRefGoogle Scholar
  40. 40.
    Arai, R., Zenda, K., Hatakeyama, K., Yui, K., Funazukuri, T.: Reaction kinetics of hydrothermal depolymerization of poly(ethylene naphthalate), poly(ethylene terephthalate), and polycarbonate with aqueous ammonia solution. Chem. Eng. Sci. 65, 36–41 (2010)CrossRefGoogle Scholar
  41. 41.
    Kim, D., Kim, B.-K., Cho, Y., Han, M., Kim, B.-S.: Kinetics of polycarbonate methanolysis by a consecutive reaction model. Ind. Eng. Chem. Res. 48, 6591–6599 (2009)CrossRefGoogle Scholar
  42. 42.
    Kim, D., Kim, B.-K., Cho, Y., Han, M., Kim, B.-S.: Kinetics of polycarbonate glycolysis in ethylene glycol. Eng. Chem. Res. 48, 685–691 (2009)CrossRefGoogle Scholar
  43. 43.
    Lin, C.-H., Lin, H.-Y., Liao, W.-Z., Dai, S.A.: Novel chemical recycling of polycarbonate (PC) waste into bis-hydroxyalkyl ethers of bisphenol A for use as PU raw materials. Green Chem. 9, 38–43 (2007)CrossRefGoogle Scholar
  44. 44.
    Pinero-Hernanz, R., Garcia-Serna, J., Cocero, M.J.: Nonstationary model of the semicontinuous depolymerization of polycarbonate. AIChE J. 52, 4186–4199 (2006)CrossRefGoogle Scholar
  45. 45.
    Margon, V., Agarwal, U.S., Bailly, C., de Wit, G., van Kasteren, J.M.N., Lemstra, P.J.: Supercritical carbon dioxide assisted extraction from the polycarbonate depolymerization mixture. J. Supercrit. Fluids 38, 44–50 (2006)CrossRefGoogle Scholar
  46. 46.
    Jie, H., Ke, H., Zhou, Q., Chen, L., Wu, Y., Zhu, Z.: Study on depolymerization of polycarbonate in supercritical ethanol. Polym. Degrad. Stab. 91, 2307–2314 (2006)CrossRefGoogle Scholar
  47. 47.
    Margon, V., Agarwal, U.S., Peters, C.J., de Wit, G., Bailly, C., van Kasteren, J.M.N., Lemstra, P.J.: Phase equilibria of binary, ternary and quaternary systems for polymerization/depolymerization of polycarbonate. J. Supercrit. Fluids 34, 309–321 (2005)CrossRefGoogle Scholar
  48. 48.
    Pinero, R., Garcia, J., Cocero, M.J.: Chemical recycling of polycarbonate in a semi-continuous lab-plant. A green route with methanol and methanol–water mixtures. Green Chem. 7, 380–387 (2005)CrossRefGoogle Scholar
  49. 49.
    Troev, K., Tsevi, R., Gitsov, I.: A novel depolymerization route to phosphorus-containing oligocarbonates. Polymer 42, 39–42 (2001)CrossRefGoogle Scholar
  50. 50.
    Hu, L.-C., Oku, A., Yamada, E.: Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer 39, 3841–3845 (1998)CrossRefGoogle Scholar
  51. 51.
    Korn, M.R., Gagne, M.R.: Convenient depolymerization route to telechelic polycarbonate oligomers. Macromolecules 31, 4023–4026 (1998)CrossRefGoogle Scholar
  52. 52.
    Tsintzou, G.P., Antonakou, E.V., Achilias, D.S.: Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation. J. Hazard. Mater. 241–242, 137–145 (2012)CrossRefGoogle Scholar
  53. 53.
    Antonakou, E.V., Achilias, D.S.: Recent advances in polycarbonate recycling: a review of degradation methods and their mechanisms. Waste Biomass Valoriz. 4, 9–21 (2013)CrossRefGoogle Scholar
  54. 54.
    Quaranta, E., Minischetti, C.C., Tartaro, G.: Chemical recycling of poly(bisphenol A carbonate) by glycolysisunder 1,8-diazabicyclo[5.4.0]undec-7-ene catalysis. ACS Omega 3, 7261–7268 (2018)CrossRefGoogle Scholar
  55. 55.
    Wu, C.-H., Chen, L.-Y., Jeng, R.-J., Dai, S., Shenghong, A.: 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustain. Chem. Eng. 6, 8964–8975 (2018)CrossRefGoogle Scholar
  56. 56.
    Do, T., Baral, E.R., Kim, J.G.: Chemical recycling of poly(bisphenol A carbonate): 1,5,7-triazabicyclo[4.4.0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 143, 106–114 (2018)CrossRefGoogle Scholar
  57. 57.
    Siddiqui, M.N., Redhwi, H.H., Antonakou, E.V., Achilias, D.S.: Pyrolysis mechanism and thermal degradation kinetics of poly(bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. J. Anal. Appl. Pyrol. 132, 123–133 (2018)CrossRefGoogle Scholar
  58. 58.
    Quaranta, E.: Rare earth metal triflates M(O3SCF3)3 (M = Sc, Yb, La) as Lewis acid catalysts of depolymerization of poly-(bisphenol A carbonate) via hydrolytic cleavage of carbonate moiety: catalytic activity of La(O3SCF3)3. Appl. Catal. B 206, 233–241 (2017)CrossRefGoogle Scholar
  59. 59.
    Grause, G., Kärrbrant, R., Kameda, T., Yoshioka, T.: Steam hydrolysis of poly(bisphenol A carbonate) in a fluidized bed reactor. Ind. Eng. Chem. Res. 53, 4215–4223 (2014)CrossRefGoogle Scholar
  60. 60.
    Jehanno, C., Pérez-Madrigal, M.M., Demarteau, J., Sardon, H., Dove, A.P.: Organocatalysis for depolymerisation. Polym. Chem. 10, 172–186 (2019)CrossRefGoogle Scholar
  61. 61.
    Alberti, C., Scheliga, F., Enthaler, S.: Depolymerization of end-of-life poly(bisphenol A carbonate) via transesterification with acetic anhydride as depolymerization reagent. ChemistrySelect 4, 2639–2643 (2019)CrossRefGoogle Scholar
  62. 62.
    Rosi, L., Bartoli, M., Undria, A., Frediani, M., Frediani, P.: Synthesis of dianols or BPA through catalytic hydrolyisis/glycolysis of waste polycarbonates using a microwave heating. J. Mol. Catal. A 408, 278–286 (2015)CrossRefGoogle Scholar
  63. 63.
    Nikje, M.M.A.: Glycolysis of polycarbonate wastes with microwave irradiation. Polimery 56, 381–384 (2011)CrossRefGoogle Scholar
  64. 64.
    Beneš, H., Paruzel, A., Trhlíková, O., Paruzel, B.: Medium chain glycerides of coconut oil for microwave enhanced conversion of polycarbonate into polyols. Eur. Polym. J. 86, 173–187 (2017)CrossRefGoogle Scholar
  65. 65.
    Wittcoff, H.A., Reuben, B.G., Plotkin, J.S.: Industrial Organic Chemicals. Wiley-VCH, Weinheim (2004)CrossRefGoogle Scholar
  66. 66.
    Fukuoka, S., Tojo, M., Hachiya, H., Aminaka, M., Hasegawa, K.: Green and sustainable chemistry in practice: development and industrialization of a novel process for polycarbonate production from CO2 without using phosgene. Polym. J. 39, 91–114 (2007)CrossRefGoogle Scholar
  67. 67.
    Selva, M., Perosa, A., Rodríguez-Padrón, D., Luque, R.: Applications of dimethyl carbonate for the chemical upgrading of biosourced platform chemicals. ACS Sustain. Chem. Eng. 7, 6471–6479 (2019)CrossRefGoogle Scholar
  68. 68.
    Alberti, C., Enthaler, S.: Depolymerization of end-of-life poly(bisphenol A carbonate) via alkali metal halide-catalyzed methanolysis. Asian J. Org. Chem. (2019).  https://doi.org/10.1002/ajoc.201900242R1 Google Scholar
  69. 69.
    Alberti, C., Scheliga, F., Enthaler, S.: Recycling of end-of-life poly(bisphenol A carbonate) via alkali metal halide-catalyzed phenolysis. ChemistryOpen (2019).  https://doi.org/10.1002/open.201900149 Google Scholar
  70. 70.
    Lidström, P., Tierney, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis—a review. Tetrahedron 57, 9225–9283 (2001)CrossRefGoogle Scholar
  71. 71.
    Anastas, P., Eghbali, N.: Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010)CrossRefGoogle Scholar
  72. 72.
    Kiran, S., James, N.R., Joseph, R., Jayakrishnan, A.: Synthesis and characterization of iodinated polyurethane with inherent radiopacity. Biomaterials 30, 5552–5559 (2009)CrossRefGoogle Scholar
  73. 73.
    Campion, C.L., Li, W., Lucht, B.L.: Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 152, A2327–A2334 (2005)CrossRefGoogle Scholar
  74. 74.
    Lacroix, J.F., Soldera, A., Lavoie, J.M.: A thermodynamic resolution of dimethyl carbonate decarboxylation and the first example of its reversibility: dimethyl ether carboxylation. J. CO2 Util. 7, 46–50 (2014)CrossRefGoogle Scholar
  75. 75.
    Selva, M., Benedet, V., Fabris, M.: Selective catalytic etherification of glycerol formal and solketal with dialkyl carbonates and K2CO3. Green Chem. 14, 188–200 (2012)CrossRefGoogle Scholar
  76. 76.
    Selva, M., Fabris, M., Perosa, A.: Decarboxylation of dialkyl carbonates to dialkyl ethers over alkali metal-exchanged faujasites. Green Chem. 13, 863–872 (2011)CrossRefGoogle Scholar
  77. 77.
    Zhang, Z., Xu, H., Zhang, Q., Zhang, A., Li, Y., Li, W.: Separation of methanol + dimethyl carbonate azeotropic mixture using ionic liquids as entrainers. Fluid Phase Equilibria 435, 98–103 (2017)CrossRefGoogle Scholar
  78. 78.
    Wang, Z., Yang, X., Li, J., Liu, S., Wang, G.: Synthesis of high-molecular-weight aliphatic polycarbonates from diphenyl carbonate and aliphatic diols by solid base. J. Mol. Catal. A 424, 77–84 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für Anorganische und Angewandte ChemieUniversität HamburgHamburgGermany

Personalised recommendations