Advertisement

Health-Promoting Properties of Brazilian Unconventional Food Plants

  • Maria Carolina Oliveira Peisino
  • Mariana Santiago Zouain
  • Marcella Malavazi de Christo Scherer
  • Elisângela Flávia Pimentel Schmitt
  • Marcos Vinicius Toledo e Silva
  • Thiago Barth
  • Denise Coutinho Endringer
  • Rodrigo Scherer
  • Marcio FronzaEmail author
Original Paper
  • 9 Downloads

Abstract

Purpose

This study lies on the unexplored and unprecedented opportunities for the discovery of Unconventional Food Plants (UFPs) rich in nutrients and bioactive compounds. UFPs grow spontaneously and have been consider an important food sources and demonstrate health-promoting properties. This study aimed to investigate the phytochemical profiles together with the anti-inflammatory and antioxidant in vitro activities of the Brazilian UFPs Hypochaeris chillensis, Emilia fosbergii and Emilia sonchifolia.

Methods

Preliminary secondary metabolites were identified by LC–MS/MS analysis. Antioxidant activity was determined by the ABTS cation radical scavenging capacity, ferric reducing/antioxidant potential (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays. The effects of UFPs on nitric oxide (NO), superoxide anion generation (O2•−), and pro-inflammatory cytokine (TNF-α and IL-6) production and on nuclear factor kappa B (NF-κB) activity was determined using Griess reagent, immunoenzymatic assay kits (ELISA) and chemiluminescence measurements in cell-based assays, respectively.

Results

Phytochemical analysis revealed significant amount of total phenolic content in all of the studied plants. E. fosbergii showed the highest antioxidant capacity in all of the chemical assays, exhibiting IC50 values of 32.9 ± 4.8, 50.2 ± 2.3 and 24.0 ± 2.9 µg mL−1 in the ABTS, DPPH and FRAP assays, respectively. The studied UFPs showed a significant intracellular reduction in NO and O2•− production in LPS-stimulated RAW 264.7 macrophages. Additionally, UFPs suppressed the production of the pro-inflammatory cytokines TNF-α and IL-6 in a dose-dependent manner. Moreover, E. sonchifolia suppressed NF-κB activity.

Conclusions

Altogether, the investigated UFPs exhibited promising bioactive compounds that were capable of neutralizing free radicals, controlling oxidative stress and modulating the inflammatory process.

Graphic Abstract

Keywords

Hypochaeris chillensis Emilia fosbergii Emilia sonchifolia Oxidative stress Inflammation 

Abbreviations

ABTS

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

DPPH

2,2-Diphenyl-1-picrylhydrazyl

ELISA

Enzyme-linked immunosorbent assay

FRAP

Ferric reducing antioxidant power

IL

Interleukin

iNOS

Nitric oxide synthase

LPS

Lipopolysaccharide

MTT

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NF-kB

Nuclear transcription factor kappa B

NO

Nitric oxide

O2•−

Superoxide anion

UFPs

Unconventional food plants

ROS

Reactive oxygen species

TNFα

Tumour necrosis factor alpha

Notes

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) (Finance Code 001). The authors also wish to thank the Fundação de Amparo à Pesquisa do Espirito Santo (FAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12649_2019_792_MOESM1_ESM.docx (19 kb)
Supplementary file 1 (DOCX 18 kb)
12649_2019_792_MOESM2_ESM.docx (13 kb)
Supplementary file 2 (DOCX 12 kb)
12649_2019_792_MOESM3_ESM.docx (13 kb)
Supplementary file 3 (DOCX 13 kb)
12649_2019_792_MOESM4_ESM.docx (13 kb)
Supplementary file 4 (DOCX 12 kb)
12649_2019_792_MOESM5_ESM.tif (316 kb)
Supplementary file 5 (TIFF 315 kb)
12649_2019_792_MOESM6_ESM.tif (402 kb)
Supplementary file 6 (TIFF 402 kb)
12649_2019_792_MOESM7_ESM.tif (648 kb)
Supplementary file 7 (TIFF 647 kb)

References

  1. 1.
    Leal, M.L., Alves, R.P., Hanazaki, N.: Knowledge, use, and disuse of unconventional food plants. J. Ethnobiol. Ethnomed. 14, 6 (2018).  https://doi.org/10.1186/s13002-018-0209-8 CrossRefGoogle Scholar
  2. 2.
    Fernandes, G.W., Vale, M.M., Overbeck, G.E., Bustamante, M.M.C., Grelle, C.E.V., Bergallo, H.G., et al.: Dismantling Brazil’s science threatens global biodiversity heritage. Perspect Ecol Conserv 15, 239–243 (2017).  https://doi.org/10.1016/j.pecon.2017.07.004 Google Scholar
  3. 3.
    Azam, F.M.S., Biswas, A., Mannan, A., Afsana, N.A., Jahan, R., Rahmatullah, M.: Are famine food plants also ethnomedicinal plants? An ethnomedicinal appraisal of famine food plants of two districts of Bangladesh. Evid. Based Complement. Altern. Med. 2014, 1–28 (2014).  https://doi.org/10.1155/2014/741712 CrossRefGoogle Scholar
  4. 4.
    Gilcy, G.K., Kuttan, G.: Evaluation of antiangiogenic efficacy of Emilia sonchifolia (L.) DC on tumor-specific neovessel formation by regulating MMPs, VEGF, and proinflammatory cytokines. Integr Cancer Ther 15, 1–12 (2016).  https://doi.org/10.1177/1534735416630807 CrossRefGoogle Scholar
  5. 5.
    Nworu, C.S., Akah, P.A., Okoye, F.B.C., Esimone, C.O.: Inhibition of pro-inflammatory cytokines and inducible nitric oxide by extract of Emilia sonchifolia L. aerial parts. Immunopharmacol. Immunotoxicol. 34, 925–931 (2012).  https://doi.org/10.3109/08923973.2012.696202 CrossRefGoogle Scholar
  6. 6.
    Del Ré, P.V., Jorge, N.: Spices as natural antioxidants: Their application in food and implication for health. Rev. Bras. Plantas Med. 14, 389–399 (2012).  https://doi.org/10.1590/S1516-05722012000200021 CrossRefGoogle Scholar
  7. 7.
    Burneiko, R.C.M., Diniz, Y.S., Galhardi, C.M., Rodrigues, H.G., Ebaid, G.M.X., Faine, L.A., Padovani, C.R., Cicogna, A.C., Novelli, E.L.B.: Interaction of hypercaloric diet and physical exercise on lipid profile, oxidative stress and antioxidant defenses. Food Chem Toxicol 44, 1167–1172 (2006).  https://doi.org/10.1016/j.fct.2006.01.004 CrossRefGoogle Scholar
  8. 8.
    Moharram, H.A., Youssef, M.M.: Methods for determining the antioxidant activity: a review. Alex. J. Food Sci. Technol. 11, 31–42 (2014)Google Scholar
  9. 9.
    Gluvic, Z., Zaric, B., Resanovic, I., Obradovic, M., Mitrovic, A., Radak, D., Isenovic, E.R.: Link between metabolic syndrome and insulin resistance. Curr Vasc Pharmacol. 15, 30–39 (2017).  https://doi.org/10.2174/1570161114666161007164510 CrossRefGoogle Scholar
  10. 10.
    Rosa, F.T., Zulet, M.Á., Marchini, J.S., Martínez, J.A.: Bioactive compounds with effects on inflammation markers in humans. Int. J. Food Sci. Nutr. 63, 749–765 (2012).  https://doi.org/10.3109/09637486.2011.649250 CrossRefGoogle Scholar
  11. 11.
    Barbosa, K.B.F., Costa, N.M.B., Alfenas, R.D.C.G., De Paula, S.O., Minim, V.P.R., Bressan, J.: Oxidative stress: concept, implications and modulating factors. Rev Nutr 23, 629–643 (2010).  https://doi.org/10.1590/s1415-52732010000400013 CrossRefGoogle Scholar
  12. 12.
    Moraes, F.P., Colla, L.M.: Functional foods and nutraceuticals: definition, legislation and health benefits. Rev. Eletrôn. Farm. 3, 99–112 (2006)Google Scholar
  13. 13.
    Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K.: Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem 166, 585–595 (2015).  https://doi.org/10.1016/j.foodchem.2014.06.066 CrossRefGoogle Scholar
  14. 14.
    Krepsky, P.B., Isidório, R.G., De Souza Filho, J.D., Côrtes, S.F., Braga, F.C.: Chemical composition and vasodilatation induced by Cuphea carthagenensis preparations. Phytomedicine 19, 953–957 (2012).  https://doi.org/10.1016/j.phymed.2012.05.011 CrossRefGoogle Scholar
  15. 15.
    Zhu, Z., Li, J., Gao, X., Amponsem, E., Kang, L., Hu, L., Zhang, B., Chang, Y.: Simultaneous determination of stilbenes, phenolic acids, flavonoids and anthraquinones in Radix polygoni multiflori by LC–MS/MS. J. Pharm. Biomed. Anal. 62, 162–166 (2012).  https://doi.org/10.1016/j.jpba.2011.11.002 CrossRefGoogle Scholar
  16. 16.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).  https://doi.org/10.1016/S0891-5849(98)00315-3 CrossRefGoogle Scholar
  17. 17.
    Benzie, I.F., Strain, J.J.: Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 299, 15–27 (1999)CrossRefGoogle Scholar
  18. 18.
    Scherer, R., Godoy, H.T.: Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 112, 654–658 (2009).  https://doi.org/10.1016/j.foodchem.2008.06.026 CrossRefGoogle Scholar
  19. 19.
    Mosmann, T.: Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Methods 65, 55–63 (1983).  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  20. 20.
    Marques, F.M., Figueira, M.M., Schmitt, E.F.P., Kondratyuk, T.P., Endringer, D.C., Scherer, R., Fronza, M.: In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology 27, 281–289 (2019).  https://doi.org/10.1007/s10787-018-0483-z CrossRefGoogle Scholar
  21. 21.
    Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R.: Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).  https://doi.org/10.1016/0003-2697(82)90118-X CrossRefGoogle Scholar
  22. 22.
    Kondratyuk, T.P., Park, E.-J., Yu, R., van Breemen, R.B., Asolkar, R.N., Murphy, B.T., Fenical, W., Pezzuto, J.M.: Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar. Drugs 10, 451–464 (2012).  https://doi.org/10.3390/md10020451 CrossRefGoogle Scholar
  23. 23.
    Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Marino, A.G., Knap, N., Wozniak, M., Gorska-Ponikowska, M.: Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 19, 686 (2018).  https://doi.org/10.3390/ijms19030686 CrossRefGoogle Scholar
  24. 24.
    Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S., Ju, Y.H.: Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 22, 296–302 (2014).  https://doi.org/10.1016/j.jfda.2013.11.001 CrossRefGoogle Scholar
  25. 25.
    Valli, M., Dos Santos, R.N., Figueira, L.D., Nakajima, C.H., Castro-Gamboa, I., Andricopulo, A.D., Bolzani, V.S.: Development of a natural products database from the biodiversity of Brazil. J. Nat. Prod. 76, 439–444 (2013).  https://doi.org/10.1021/np3006875 CrossRefGoogle Scholar
  26. 26.
    Clifford, M.N., Johnston, K.L., Knight, S., Kuhnert, N.: Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 51, 2900–2911 (2003).  https://doi.org/10.1021/jf026187q CrossRefGoogle Scholar
  27. 27.
    March, R.E., Lewars, E.G., Stadey, C.J., Miao, X.-S., Zhao, X., Metcalfe, C.D.: A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int. J. Mass Spectrom. 248, 61–85 (2006).  https://doi.org/10.1016/j.ijms.2005.09.011 CrossRefGoogle Scholar
  28. 28.
    Chen, H.J., Inbaraj, B.S., Chen, B.H.: Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 13, 260–285 (2012).  https://doi.org/10.3390/ijms13010260 CrossRefGoogle Scholar
  29. 29.
    Hossain, M.B., Camphuis, G., Aguiló-Aguayo, I., Gangopadhyay, N., Rai, D.K.: Antioxidant activity guided separation of major polyphenols of marjoram (Origanum majorana L.) using flash chromatography and their identification by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Sep Sci 37, 3205–3213 (2014).  https://doi.org/10.1002/jssc.201400597 CrossRefGoogle Scholar
  30. 30.
    Zheng, G.D., Zhou, P., Yang, H., Li, Y.S., Li, P., Liu, E.H.: Rapid resolution liquid chromatography-electrospray ionisation tandem mass spectrometry method for identification of chemical constituents in Citri Reticulatae Pericarpium. Food Chem. 136, 604–611 (2013).  https://doi.org/10.1016/j.foodchem.2012.08.040 CrossRefGoogle Scholar
  31. 31.
    Couto, V.M., Vilela, F.C., Dias, D.F., Dos Santos, M.H., Soncini, R., Nascimento, C.G.O., Giusti-Paiva, A.: Antinociceptive effect of extract of Emilia sonchifolia in mice. J. Ethnopharmacol. 134, 348–353 (2011).  https://doi.org/10.1016/j.jep.2010.12.028 CrossRefGoogle Scholar
  32. 32.
    Senguttuvan J, Paulsamy S, Karthika K (2014) Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac J Trop Biomed 4:S359–S367. https://doi.org/10.12980/APJTB.4.2014C1030
  33. 33.
    Min, K., Ebeler, S.E.: Flavonoid effects on DNA oxidation at low concentrations relevant to physiological levels. Food Chem. Toxicol. 46, 96–104 (2008).  https://doi.org/10.1016/j.fct.2007.07.002 CrossRefGoogle Scholar
  34. 34.
    Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191–203 (2006).  https://doi.org/10.1016/j.foodchem.2005.07.042 CrossRefGoogle Scholar
  35. 35.
    Vittorazzi, C., Endringer, D.C., Andrade, T.U.De, Scherer, R., Fronza, M.: Antioxidant, antimicrobial and wound healing properties of Struthanthus vulgaris. Pharm. Biol. 54, 331–337 (2016).  https://doi.org/10.3109/13880209.2015.1040515 CrossRefGoogle Scholar
  36. 36.
    Durán, W.N., Breslin, J.W., Sánchez, F.A.: The NO cascade, eNOS location, and microvascular permeability. Cardiovasc. Res. 87, 254–261 (2010).  https://doi.org/10.1093/cvr/cvq139 CrossRefGoogle Scholar
  37. 37.
    Hardingham, N., Dachtler, J., Fox, K.: The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front. Cell. Neurosci. 7, 190 (2013).  https://doi.org/10.3389/fncel.2013.00190 CrossRefGoogle Scholar
  38. 38.
    Molavi, B., Mehta, J.L.: Oxidative stress in cardiovascular disease: molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr. Opin. Cardiol. 19, 488–493 (2004).  https://doi.org/10.1097/01.hco.0000133657.77024.bd CrossRefGoogle Scholar
  39. 39.
    Coutinho, M.A.S., Muzitano, M.F., Costa, S.S.: Flavonoids: potential therapeutic agents for the inflammatory process. Rev. Virtual Química. 1, 241–256 (2009).  https://doi.org/10.5935/1984-6835.20090024 Google Scholar
  40. 40.
    Fullerton, J.N., Gilroy, D.W.: Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).  https://doi.org/10.1038/nrd.2016.39 CrossRefGoogle Scholar
  41. 41.
    Muko, K.N., Ohiri, F.C.: A preliminary study on the anti-inflammatory properties of Emilia sonchifolia leaf extracts. Fitoterapia 71, 65–68 (2000).  https://doi.org/10.1016/S0367-326X(99)00123-9 CrossRefGoogle Scholar
  42. 42.
    Park, M., Hong, J.: Roles of NF-κB in Cancer and inflammatory diseases and their therapeutic approaches. Cells 5, 15 (2016).  https://doi.org/10.3390/cells5020015 CrossRefGoogle Scholar
  43. 43.
    Haddad, J.J.: Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal. 14, 879–897 (2002).  https://doi.org/10.1016/S0898-6568(02)00053-0 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Maria Carolina Oliveira Peisino
    • 1
  • Mariana Santiago Zouain
    • 1
  • Marcella Malavazi de Christo Scherer
    • 1
  • Elisângela Flávia Pimentel Schmitt
    • 1
  • Marcos Vinicius Toledo e Silva
    • 2
  • Thiago Barth
    • 2
  • Denise Coutinho Endringer
    • 1
  • Rodrigo Scherer
    • 1
  • Marcio Fronza
    • 1
    Email author
  1. 1.Programa de Pós-Graduação Em Ciências Farmacêuticas, Laboratório de Produtos NaturaisUniversidade Vila VelhaVila VelhaBrazil
  2. 2.Laboratório de Produtos Bioativos, Curso de FarmáciaUniversidade Federal Do Rio de JaneiroMacaéBrazil

Personalised recommendations