Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 12, pp 3545–3555 | Cite as

Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC

  • İlhami Okur
  • Cem BaltacıoğluEmail author
  • Erdal Ağçam
  • Hande Baltacıoğlu
  • Hami Alpas
Original Paper
  • 228 Downloads

Abstract

Sour cherry pomace derived from mashed cherries that maintains the color and beneficial properties of the cherries (Prunus cerasus L.). In this study, microwave-assisted extraction (MAE) (900 W for 30, 60 and 90 s.), high hydrostatic pressure (HHP) (400 and 500 MPa for 1, 5 and 10 min at 20 °C) and ultrasonic-assisted extraction (UAE) (for 5,10 and 15 min with a power of 100%) was used as novel processes. Total phenolic content (TPC), morphological changes, antioxidant activity (AA) and structural changes of cherry pomace were measured by the Folin–Ciocalteu assay, high performance liquid chromatography (HPLC), DPPH-scavenging activity, scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). According to the results, all novel technologies (MAE-HHP-UAE) increase PC and AA with respect to conventional solvent extraction method (50 °C and 30 min) (CSE). Among novel technologies, MAE (90 s) had highest TPC (275.31 ± 4.26 GAE/100 g FW) and also had highest antioxidant activity (89.9 ± 0.22%). The lowest TPC and AA values were 108.36 ± 3.99 mg gallic acid equivalent (GAE)/100 g fresh weight (FW) and 71.30 ± 1.21% in CSE, respectively. According to FTIR results, there are no significant structural changes in samples when different extraction techniques were applied. Individual phenolics were quantified by using HPLC for different extraction techniques.

Graphic Abstract

Keywords

Sour cherry pomace High hydrostatic pressure (HHP) Ultrasonic-assisted extraction (UAE) Microwave-assisted extraction (MAE) Fourier transform infrared spectrometry (FTIR) High performance liquid chromatography (HPLC) 

Notes

References

  1. 1.
    Balasundram, N., Sundram, K., Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191–203 (2006).  https://doi.org/10.1016/J.FOODCHEM.2005.07.042 CrossRefGoogle Scholar
  2. 2.
    Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Lamuela-Raventós, R., Buxaderas, S., Codina, C.: An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 97, 137–150 (2006).  https://doi.org/10.1016/J.FOODCHEM.2005.03.033 CrossRefGoogle Scholar
  3. 3.
    Hu, F.B.: Plant-based foods and prevention of cardiovascular disease: an overview. Am. J. Clin. Nutr. 78, 544S–551S (2003).  https://doi.org/10.1093/ajcn/78.3.544S CrossRefGoogle Scholar
  4. 4.
    He, F.J., Nowson, C.A., Lucas, M., MacGregor, G.A.: Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies. J. Hum. Hypertens. 21, 717–728 (2007).  https://doi.org/10.1038/sj.jhh.1002212 CrossRefGoogle Scholar
  5. 5.
    King, A.J.G., Youez, G.: An evaluation of the evidence associating the phenolic phytochemicals in food with cancer chemoprevention. http://www.sciencedirect.com/science/article/pii/S000282239600497X, (1996)
  6. 6.
    Stoner, G.D., Wang, L.S., Casto, B.C.: Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis 29, 1665–1674 (2008).  https://doi.org/10.1093/carcin/bgn142 CrossRefGoogle Scholar
  7. 7.
    Wang, L.: Energy efficiency technologies for sustainable food processing. Energy Effic. 7, 791–810 (2014).  https://doi.org/10.1007/s12053-014-9256-8 CrossRefGoogle Scholar
  8. 8.
    Seeram, N.P., Momin, R.A., Nair, M.G., Bourquin, L.D.: Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8, 362–369 (2001).  https://doi.org/10.1078/0944-7113-00053 CrossRefGoogle Scholar
  9. 9.
    Mulabagal, V., Lang, G.A., Dewitt, D.L., Dalavoy, S.S., Nair, M.G.: Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57, 1239–1246 (2009).  https://doi.org/10.1021/jf8032039 CrossRefGoogle Scholar
  10. 10.
    Kang, S.Y., Seeram, N.P., Nair, M.G., Bourquin, L.D.: Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194, 13–19 (2003).  https://doi.org/10.1016/S0304-3940(02)00583-9 CrossRefGoogle Scholar
  11. 11.
    Tomás-Barberán, F.A., Gil, M.I., Cremin, P., Waterhouse, A.L., Hess-Pierce, B., Kader, A.A.: HPLC—DAD—ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agric. Food Chem. 49, 4748–4760 (2001).  https://doi.org/10.1021/jf0104681 CrossRefGoogle Scholar
  12. 12.
    Fragoso, S., Mestres, M., Busto, O., Guasch, J.: Comparison of three extraction methods used to evaluate phenolic ripening in red grapes. J. Agric. Food Chem. 58, 4071–4076 (2010).  https://doi.org/10.1021/jf9040639 CrossRefGoogle Scholar
  13. 13.
    Mújica-Paz, H., Valdez-Fragoso, A., Samson, C.T., Welti-Chanes, J., Torres, A.: High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol. 4, 969–985 (2011).  https://doi.org/10.1007/s11947-011-0543-5 CrossRefGoogle Scholar
  14. 14.
    Prasad, K.N., Yang, E., Yi, C., Zhao, M., Jiang, Y.: Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp. Innov. Food Sci. Emerg. Technol. 10, 155–159 (2009).  https://doi.org/10.1016/J.IFSET.2008.11.007 CrossRefGoogle Scholar
  15. 15.
    Corrales, M., Toepfl, S., Butz, P., Knorr, D., Tauscher, B.: Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov. Food Sci. Emerg. Technol. 9, 85–91 (2008).  https://doi.org/10.1016/j.ifset.2007.06.002 CrossRefGoogle Scholar
  16. 16.
    Proestos, C., Komaitis, M.: Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT—Food Sci. Technol. 41, 652–659 (2008).  https://doi.org/10.1016/J.LWT.2007.04.013 CrossRefGoogle Scholar
  17. 17.
    Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006).  https://doi.org/10.1016/J.TIFS.2005.12.004 CrossRefGoogle Scholar
  18. 18.
    Wu, T., Yan, J., Liu, R., Marcone, M.F., Aisa, H.A., Tsao, R.: Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chem. 133, 1292–1298 (2012).  https://doi.org/10.1016/J.FOODCHEM.2011.08.002 CrossRefGoogle Scholar
  19. 19.
    Routray, W., Orsat, V.: Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol. 5, 409–424 (2012).  https://doi.org/10.1007/s11947-011-0573-z CrossRefGoogle Scholar
  20. 20.
    Vinatoru, M.: An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8, 303–313 (2001).  https://doi.org/10.1016/S1350-4177(01)00071-2 CrossRefGoogle Scholar
  21. 21.
    Carrera, C., Ruiz-Rodríguez, A., Palma, M., Barroso, C.G.: Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim. Acta 732, 100–104 (2012).  https://doi.org/10.1016/j.aca.2011.11.032 CrossRefGoogle Scholar
  22. 22.
    Da Porto, C., Porretto, E., Decorti, D.: Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 20, 1076–1080 (2013).  https://doi.org/10.1016/j.ultsonch.2012.12.002 CrossRefGoogle Scholar
  23. 23.
    Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., Chemat, F.: Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119, 851–858 (2010).  https://doi.org/10.1016/j.foodchem.2009.08.046 CrossRefGoogle Scholar
  24. 24.
    Hidalgo, G.-I., Almajano, M.P.: Red fruits: extraction of antioxidants, phenolic content, and radical scavenging determination. Antioxidants (2017).  https://doi.org/10.3390/antiox6010007 CrossRefGoogle Scholar
  25. 25.
    Silva, S.D., Feliciano, R.P., Boas, L.V., Bronze, M.R.: Application of FTIR-ATR to moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 150, 489–493 (2014).  https://doi.org/10.1016/J.FOODCHEM.2013.11.028 CrossRefGoogle Scholar
  26. 26.
    Kadiroğlu, P.: FTIR spectroscopy for prediction of quality parameters and antimicrobial activity of commercial vinegars with chemometrics. J. Sci. Food Agric. 98, 4121–4127 (2018).  https://doi.org/10.1002/jsfa.8929 CrossRefGoogle Scholar
  27. 27.
    Nogales-Bueno, J., Baca-Bocanegra, B., Rooney, A., Miguel Hernández-Hierro, J., José Heredia, F., Byrne, H.J.: Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 167, 44–50 (2017).  https://doi.org/10.1016/J.TALANTA.2017.02.008 CrossRefGoogle Scholar
  28. 28.
    Nogales-Bueno, J., Baca-Bocanegra, B., Rooney, A., Hernández-Hierro, J.M., Byrne, H.J., Heredia, F.J.: Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem. 232, 602–609 (2017).  https://doi.org/10.1016/J.FOODCHEM.2017.04.049 CrossRefGoogle Scholar
  29. 29.
    Altemimi, A., Watson, D.G., Choudhary, R., Dasari, M.R., Lightfoot, D.A.: Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE 11, 1–20 (2016).  https://doi.org/10.1371/journal.pone.0148758 CrossRefGoogle Scholar
  30. 30.
    Lu, X., Wang, J., Al-Qadiri, H.M., Ross, C.F., Powers, J.R., Tang, J., Rasco, B.A.: Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 129, 637–644 (2011).  https://doi.org/10.1016/J.FOODCHEM.2011.04.105 CrossRefGoogle Scholar
  31. 31.
    Agcam, E., Akyildiz, A., Evrendilek, G.A.: Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem. (2014).  https://doi.org/10.1016/j.foodchem.2013.07.115 CrossRefGoogle Scholar
  32. 32.
    Damar, İ., Ekşi, A.: Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 135, 2910–2914 (2012).  https://doi.org/10.1016/j.foodchem.2012.07.032 CrossRefGoogle Scholar
  33. 33.
    Blando, F., Gerardi, C., Nicoletti, I.: Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol. 5, 253–258 (2004)CrossRefGoogle Scholar
  34. 34.
    Huang, H.-W., Hsu, C.-P., Yang, B.B., Wang, C.-Y.: Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol. 33, 54–62 (2013).  https://doi.org/10.1016/J.TIFS.2013.07.001 CrossRefGoogle Scholar
  35. 35.
    Jun, X., Shuo, Z., Bingbing, L., Rui, Z., Ye, L., Deji, S., Guofeng, Z.: Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharm. 386, 229–231 (2010).  https://doi.org/10.1016/J.IJPHARM.2009.10.035 CrossRefGoogle Scholar
  36. 36.
    Pinela, J., Prieto, M.A., Barros, L., Carvalho, A.M., Oliveira, M.B.P.P., Saraiva, J.A., Ferreira, I.C.F.R.: Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Sep. Purif. Technol. 192, 501–512 (2018).  https://doi.org/10.1016/J.SEPPUR.2017.10.007 CrossRefGoogle Scholar
  37. 37.
    Prasad, K.N., Hao, J., Shi, J., Liu, T., Li, J., Wei, X., Qiu, S., Xue, S., Jiang, Y.: Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov. Food Sci. Emerg. Technol. 10, 413–419 (2009).  https://doi.org/10.1016/j.ifset.2009.04.003 CrossRefGoogle Scholar
  38. 38.
    He, B., Zhang, L.-L., Yue, X.-Y., Liang, J., Jiang, J., Gao, X.-L., Yue, P.-X.: Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016).  https://doi.org/10.1016/J.FOODCHEM.2016.02.094 CrossRefGoogle Scholar
  39. 39.
    Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguiéres, A., Renouard, S., Blondeau, J.-P., Ferroud, C., Doussot, J., Lainé, E., Hano, C.: Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds. Ultrason. Sonochem. 26, 176–185 (2015).  https://doi.org/10.1016/j.ultsonch.2015.02.008 CrossRefGoogle Scholar
  40. 40.
    Avhad, D.N., Rathod, V.K.: Ultrasound assisted production of a fibrinolytic enzyme in a bioreactor. Ultrason. Sonochem. 22, 257–264 (2015).  https://doi.org/10.1016/J.ULTSONCH.2014.04.020 CrossRefGoogle Scholar
  41. 41.
    Tao, Y., Wu, D., Zhang, Q.-A., Sun, D.-W.: Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. Ultrason. Sonochem. 21, 706–715 (2014).  https://doi.org/10.1016/J.ULTSONCH.2013.09.005 CrossRefGoogle Scholar
  42. 42.
    Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.: Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 8, 137–142 (2001).  https://doi.org/10.1016/S1350-4177(00)00033-X CrossRefGoogle Scholar
  43. 43.
    Samaram, S., Mirhosseini, H., Tan, C.P., Ghazali, H.M., Bordbar, S., Serjouie, A.: Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 172, 7–17 (2015).  https://doi.org/10.1016/J.FOODCHEM.2014.08.068 CrossRefGoogle Scholar
  44. 44.
    Alighourchi, H.R., Barzegar, M., Sahari, M.A., Abbasi, S.: Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. Int. Food Res. J. 20, 1703–1709 (2013)Google Scholar
  45. 45.
    Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X.D., Mao, Z.-H.: Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 62, 192–198 (2008).  https://doi.org/10.1016/J.SEPPUR.2008.01.014 CrossRefGoogle Scholar
  46. 46.
    Li, H., Pordesimo, L., Weiss, J.: High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 37, 731–738 (2004).  https://doi.org/10.1016/J.FOODRES.2004.02.016 CrossRefGoogle Scholar
  47. 47.
    Li, H., Pordesimo, L., Weiss, J.: High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int. 37, 731–738 (2004).  https://doi.org/10.1016/J.FOODRES.2004.02.016 CrossRefGoogle Scholar
  48. 48.
    Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K.: Pistacia lentiscus leaves as a source of phenolic compounds : microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crop. Prod. 61, 31–40 (2014).  https://doi.org/10.1016/j.indcrop.2014.06.035 CrossRefGoogle Scholar
  49. 49.
    Ricci, A., Olejar, K.J., Parpinello, G.P., Kilmartin, P.A., Versari, A.: Application of fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 50, 407–442 (2015).  https://doi.org/10.1080/05704928.2014.1000461 CrossRefGoogle Scholar
  50. 50.
    Levaj, B., Dragovi, V., Delonga, K., Kova, K.: Polyphenols and volatiles in fruits of two sour cherry cultivars, some berry fruits and their jams. Food Technol. Biotechnol. 48, 538–547 (2010)Google Scholar
  51. 51.
    Mitic, M.N., Obradovic, M.V., Kostic, D.A., Naskovi, D.Č., Micic, R.J.: Phenolics content and antioxidant capacity of commercial red fruit juices. Hem. Ind. 65, 611–619 (2011).  https://doi.org/10.2298/HEMIND110418042M CrossRefGoogle Scholar
  52. 52.
    Simsek, M., Sumnu, G., Sahin, S.: Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47, 1248–1254 (2012).  https://doi.org/10.1080/01496395.2011.644616 CrossRefGoogle Scholar
  53. 53.
    Kołodziejczyk, K., Sójka, M., Abadias, M., Vi, I., Guyot, S., Baron, A.: Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crop. Prod. 51, 279–288 (2013).  https://doi.org/10.1016/j.indcrop.2013.09.030 CrossRefGoogle Scholar
  54. 54.
    Yılmaz, F.M., Karaaslan, M., Vardin, H.: Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 52, 2851–2859 (2015).  https://doi.org/10.1007/s13197-014-1345-3 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • İlhami Okur
    • 1
    • 2
  • Cem Baltacıoğlu
    • 1
    Email author
  • Erdal Ağçam
    • 3
  • Hande Baltacıoğlu
    • 1
  • Hami Alpas
    • 2
  1. 1.Food Engineering Department, Engineering FacultyNigde Omer Halisdemir UniversityNigdeTurkey
  2. 2.Food Engineering Department, Engineering FacultyMiddle East Technical UniversityAnkaraTurkey
  3. 3.Food Engineering Department, Agriculture FacultyCukurova UniversityAdanaTurkey

Personalised recommendations