Advertisement

Towards Zero-waste Recovery of Bioactive Compounds from Catfish (Pangasius hypophthalmus) By-products Using an Enzymatic Method

  • Pham Viet Nam
  • Nguyen Van HoaEmail author
  • Tran Thi Lan Anh
  • Trang Si TrungEmail author
Original Paper

Abstract

Catfish (Pangasius hypophthalmus) is one of the main seafood products of Vietnam with a large amount of over 1.3 million tons in 2018. However, after the processing, large amount of the harvested catfish is considered as by-products. In this study, catfish by-products have been used to produce three bioactive components, including fish protein hydrolysate (FPH), hydroxyapatite (HA) and lipid fraction by an enzymatic method. The fish by-products were hydrolyzed by using an Alcalase-substrate ratio of 0.4% (v/w) at 60 °C and natural pH for 9 h with a water-raw material ratio of 1:1 (mL/g). The results show that the protein hydrolysate has degree of hydrolysis (DH) of over 30%, nitrogen recovery (NR) of over 80% and contained a large amount of essential amino acids. HA particles have a size of 50–70 nm with high porosity and quite uniformity, suggesting its potential applications such as bone scaffold or regenerative materials. The lipid fraction has high vitamin A content with a small amount of fatty acids (ca. 90 mg/g) that can be refined for further food applications. This recovery method is simple, environmentally-friendly and can be scale-up easily. In addition, the cheap fish by-products were processed to give value-added products as well as reduce the undesirable environmental impact.

Graphic Abstract

Keywords

Catfish by-product Protein hydrolysate Hydroxyapatite Alcalase Lipid fraction 

Notes

References

  1. 1.
    Dekkers, E., Raghavan, S., Kristinsson, H.G., Marshall, M.R.: Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chem. 124, 640–645 (2011)CrossRefGoogle Scholar
  2. 2.
    Ishak, N.H., Sarbon, N.M.: A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess. Technol. 11, 2–16 (2018)CrossRefGoogle Scholar
  3. 3.
    Samaranayaka, A.G.P., Li-Chan, E.C.Y.: Autolysis-assisted production of fish protein hydrolysates with antioxidant properties from Pacific hake (Merluccius productus). Food Chem. 107, 768–776 (2008)CrossRefGoogle Scholar
  4. 4.
    Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W., Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014)CrossRefGoogle Scholar
  5. 5.
    Gehring, C.K., Gigliotti, J.C., Moritz, J.S., Tou, J.C., Jaczynski, J.: Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: a review. Food Chem. 124, 422–431 (2011)CrossRefGoogle Scholar
  6. 6.
    Kristinsson, H.G., Rasco, B.A.: Fish protein hydrolysates: production, biochemical, and functional properties. Food Sci. Nutr. 40, 43–81 (2000)Google Scholar
  7. 7.
    Idowu, A.T., Benjakul, S., Sinthusamran, S., Sookchoo, P., Kishimura, H.: Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J. Food Biochem. (2018).  https://doi.org/10.1111/jfbc.12734 Google Scholar
  8. 8.
    Sillero, Z.J., Kütter, M.T., Tesser, M.B., Monserrat, J.M., Prentice, C.: Effect of dietary common carp by-product protein hydrolysates on antioxidant status in different organs of zebrafish (Danio rerio). Aquac. Nutr. (2018).  https://doi.org/10.1111/anu.12835 Google Scholar
  9. 9.
    See, S.F., Hoo, L.L., Babji, A.S.: Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. Int. Food Res. J. 18(4), 1359–1365 (2011)Google Scholar
  10. 10.
    Roslana, J.M.D., Yunosa, K.F., Abdullahb, N., Kamal, S.M.M.: Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agric. Agric. Sci. Procedia 2, 312–319 (2014)Google Scholar
  11. 11.
    Amiza, M.A., Nurul, A.S., Faazaz, A.L.: Optimization of enzymatic protein hydrolysis from silver catfish (Pangasius sp.) frame. Int. Food Res. J. 18, 775–781 (2011)Google Scholar
  12. 12.
    Minh, N.P.: Utilization of Pangasius hypophthalmus by-product to produce protein hydrolysate using alcalase enzyme. J. Harmon. Res. Appl. Sci. 2, 250–256 (2014)Google Scholar
  13. 13.
    Herpandi, H., Rosma, A., Nadiah, W.A.W., Febrianto, N.A., Huda, N.: Optimization of enzymatic hydrolysis of skipjack tuna by-product using protamex®: a response surface approach. J. Fundam. Appl. Sci. 9, 845–860 (2017)CrossRefGoogle Scholar
  14. 14.
    Mohammad, A.W., Kumar, A.G., Basha, R.K.: Optimization of enzymatic hydrolysis of tilapia (Oreochromis spp.) scale gelatine. Int. Aquat. Res. 7, 27–39 (2015)CrossRefGoogle Scholar
  15. 15.
    Fonseca, R.A.S., Silva, C.M., Fernandes, G.R., Prentice, C.: Enzymatic hydrolysis of cobia (Rachycentron canadum) meat and wastes using different microbial enzymes. Int. Food Res. J. 23(1), 152–160 (2016)Google Scholar
  16. 16.
    Vázquez, J.A., Blanco, M., Massa, A.E., Amado, I.R., Martín, R.I.P.: Production of fish protein hydrolysates from Scyliorhinus canicula discards with antihypertensive and antioxidant activities by enzymatic hydrolysis and mathematical optimization using response surface methodology. Mar. Drugs 15, 306–321 (2017)CrossRefGoogle Scholar
  17. 17.
    Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., De Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 32, 478–486 (2012)CrossRefGoogle Scholar
  18. 18.
    Venkatesan, J., Qian, Z.J., Ryu, B.M., Thomas, N.V., Kim, S.K.: A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone. Biomed. Mater. 6, 035003–0350015 (2011)CrossRefGoogle Scholar
  19. 19.
    Kongsri, S., Janpradit, K., Buapa, K., Techawongstien, S., Chanthai, S.: Nanocrystalline hydroxyapatite from fish scale waste: preparation, characterization and application for selenium adsorption in aqueous solution. Chem. Eng. J. 215–216, 522–532 (2013)CrossRefGoogle Scholar
  20. 20.
    Goodwin, J.F.: The colorimetric estimation of plasma amino nitrogen with DNFB. Clin. Chem. 14, 1080 (1968)Google Scholar
  21. 21.
    Benjakul, S., Morrissey, M.T.: Protein hydrolysates from pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423–3430 (1997)CrossRefGoogle Scholar
  22. 22.
    Fu, H., Shieh, D., Ho, C.: Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids 9, 35–46 (2002)CrossRefGoogle Scholar
  23. 23.
    Christie, W.W.: Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis, 4th edn, p. 416. The Oily Press, Bridgwater (2003)Google Scholar
  24. 24.
    Slizytea, R., Dauks, E., Falcha, E., Storrøa, I., Rustad, T.: Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochem. 40, 1415–1424 (2005)CrossRefGoogle Scholar
  25. 25.
    Guerard, F., Guimas, L., Binet, A.: Production of tuna waste hydrolysates by a commercial neutral protease preparation. J. Mol. Catal. B 19–20, 489–498 (2002)CrossRefGoogle Scholar
  26. 26.
    Cheftel, C., Ahern, M., Wang, D.I.C., Tannenbaum, S.R.: Enzymic solubilization of fish protein concentrate: batch studies applicable to continuous enzyme recycling processes. J. Agric. Food Chem. 19, 155–161 (1971)CrossRefGoogle Scholar
  27. 27.
    Fik, M., Surowka, K.: Preparation and properties of protein concentrate from broiler chicken heads. J. Sci. Food Agric. 37, 445 (1986)CrossRefGoogle Scholar
  28. 28.
    Diniz, F.M., Martin, A.M.: Influence of process variables on the hydrolysis of shark muscle protein. Food Sci. Technol. Int. 4, 91–98 (1998)CrossRefGoogle Scholar
  29. 29.
    Violet, M., Meunier, J.C.: Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase. Biochem. J. 263, 665–670 (1989)CrossRefGoogle Scholar
  30. 30.
    dos Santos, S.D., Martins, V.G., Salas-Mellado, M., Prentice, C.: Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol. 4, 1399–1406 (2011)CrossRefGoogle Scholar
  31. 31.
    Theodore, A.E., Raghavan, S., Kristinsson, H.G.: Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates. J. Agric. Food Chem. 56, 7459–7466 (2008)CrossRefGoogle Scholar
  32. 32.
    Monmaturapoj, N., Yatongchai, C.: Effect of sintering on microstructure and properties of hydroxyapatite produced by different synthesizing methods. J Met. Mater. Miner. 20, 53–61 (2010)Google Scholar
  33. 33.
    Manalu, J.L., Soegijono, B., Indrani, D.J.: Study of mg-hydroxyapatite composite with various composition of hydroxyapatite which obtained from cow bones in simulation body fluid (SBF). Asian J. Appl. Sci. 3, 810–816 (2016)Google Scholar
  34. 34.
    Amer, W., Abdelouahdi, K., Ramananarivo, H.R., Zahouily, M., Fihri, A., Djessas, K., Solhy, A.: Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. J. CrystEngComm 16, 543–549 (2013)CrossRefGoogle Scholar
  35. 35.
    Sunil, B.R., Jagannatham, M.: Producing hydroxyapatite from fish bones by heat treatment. Mater. Lett. 185, 411–414 (2016)CrossRefGoogle Scholar
  36. 36.
    Luna-Zaragoza, D., Romero-Guzmán, E.T., Reyes-Gutiérrez, L.R.: Surface and physicochemical characterization of phosphates vivianite, Fe2(PO4)3 and hydroxyapatite, Ca5(PO4)3OH. J. Miner. Mater. Charac. Eng. 8, 591–609 (2009)Google Scholar
  37. 37.
    Lu, H.B., Campbell, C.T., Graham, D.J., Ratner, B.D.: Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF-SIMS. Anal. Chem. 72, 2886–2894 (2000)CrossRefGoogle Scholar
  38. 38.
    Araújo, K.L.G.V., Epaminondas, P.S., Silva, M.C.D., de Lima, A.E.A., Rosenhaim, R., Maia, A.S., Soledade, L.E.B., Souza, A.L., Santos, I.M.G., Souza, A.G., Queiroz, N.: Influence of thermal degradation in the physicochemical properties of fish oil. J. Therm. Anal. Calorim. 106, 557–561 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of FisheriesHo Chi Minh City University of Food IndustryHo Chi Minh CityVietnam
  2. 2.Faculty of Food TechnologyNha Trang UniversityNha TrangVietnam

Personalised recommendations