The Role of Sustainability Analysis in the Revalorization of Tequila Residues and Wastes Using Biorefineries

  • A. SanchezEmail author
  • S. Sanchez
  • P. Dueñas
  • P. Hernandez-Sanchez
  • Y. Guadalajara
Original Paper


This work shows the role that sustainability analysis may play in the revalorization of agroindustrial residues and wastes. The tequila industry in western Mexico is taken as case study, since residues and wastes from this industry are the source of serious environmental problems in the tequila-producing regions. The proposed solution uses these residues and wastes as feedstock of an integrated multi-feedstock biorefinery for the co-production of second generation bioethanol and electricity. The sustainability analysis employed in this work considers the environmental and economic domains and monetizes their indicators on the same basis, thus highlighting the contribution of environmental aspects that might otherwise be overlooked using standard techno-economic analysis approaches. This solution is compared against alternative designs using separate facilities handling these residues and wastes. Results show that the proposed solution may be attractive since the monetized environmental impact of treating the tequila residues and wastes is only one third of the economic cost of operating the proposed biorefinery, besides solving the environmental problem.

Graphic Abstract


Biorefinery conceptual design Sustainability analysis Techno-economic analysis Tequila Lignocellulosic biomass 2G bioethanol Agave bagasse Tequila vinasses 



Financial support is kindly acknowledged from the Energy Sustainability Fund 2014-05 (CONACYT SENER, Mexico) Grants 245750 and 249564 (Mexican Bioenergy Innovation Center, Bioalcohols Cluster).


  1. 1.
    Global Reporting Initiative: Sustainability and reporting trends in 2025—preparing for the future. (2015)
  2. 2.
    National Chamber of the Tequila Industry: Basic information of tequila industry. (in Spanish) (2017)
  3. 3.
    España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., Alzate-Gaviria, L.: Vinasses: characterization and treatments. Waste Manag. Res. 29(12), 1235–1250 (2011)CrossRefGoogle Scholar
  4. 4.
    López-López, A., Davila-Vazquez, G., León-Becerril, E., Villegas-García, E., Gallardo-Valdez, J.: Tequila vinasses: generation and full scale treatment processes. Rev. Environ. Sci. Biotechnol. 9(2), 109–116 (2010)CrossRefGoogle Scholar
  5. 5.
    Moran-Salazar, R.G., Sanchez-Lizarraga, A.L., Rodriguez-Campos, J., Davila-Vazquez, G., Marino-Marmolejo, E.N., Dendooven, L., Contreras-Ramos, S.M.: Utilization of vinasses as soil amendment: consequences and perspectives. SpringerPlus 5(1), 1007 (2016)CrossRefGoogle Scholar
  6. 6.
    Beltrán-Ramírez, F., Orona-Tamayo, D., Cornejo-Corona, I., Luz Nicacio González-Cervantes, J., de Jesús Esparza-Claudio, J., Quintana-Rodríguez, E.: Agro-Industrial Waste Revalorization: The Growing Biorefinery. In: Biomass for bioenergy—recent trends and future challenges [working title]. IntechOpen (2019)Google Scholar
  7. 7.
    Buitrón, G., Prato-Garcia, D., Zhang, A.: Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Sci. Technol. 70(12), 1919–1925 (2014)CrossRefGoogle Scholar
  8. 8.
    Alemán-Nava, G.S., Gatti, I.A., Parra-Saldivar, R., Dallemand, J.-F., Rittmann, B.E., Iqbal, H.M.N.: Biotechnological revalorization of Tequila waste and by-product streams for cleaner production—a review from bio-refinery perspective. J. Clean. Prod. 172, 3713–3720 (2018)CrossRefGoogle Scholar
  9. 9.
    Arreola-Vargas, J., Jaramillo-Gante, N.E., Celis, L.B., Corona-González, R.I., González-Álvarez, V., Méndez-Acosta, H.O.: Biogas production in an anaerobic sequencing batch reactor by using tequila vinasses: effect of pH and temperature. Water Sci. Technol. 73(3), 550–556 (2016)CrossRefGoogle Scholar
  10. 10.
    Sanchez, S.: Personal Communication (2018)Google Scholar
  11. 11.
    González, M.R.C., Crespo González, M.R., González Eguiarteq, D.R., Macías, R.R., Salcido, L.A.R., Del Real Laborde, J.I., Morán, J.P.T.: Evaluation of agave bagasse compost as a substrate component to produce tequila blue agave seedlings. Mex. J. Agric. Sci. 4, 1161–1173 (2018). (in Spanish) Google Scholar
  12. 12.
    Kestur, G.S., Flores-Sahagun, T.H.S., Dos Santos, L.P., Dos Santos, J., Mazzaro, I., Mikowski, A.: Characterization of blue agave bagasse fibers of Mexico. Composites Part A 45, 153–161 (2013)CrossRefGoogle Scholar
  13. 13.
    Teplická, K.: Energy solutions based on biomass and using of quantitative optimization model for biomass boiler. Res. J. Min. 1(4), 194–200 (2017)Google Scholar
  14. 14.
    Sadhukhan, J., Ng, K.S., Hernandez, E.M.: Economic Analysis, Biorefineries and Chemical Processes. Wiley, New York (2014)Google Scholar
  15. 15.
    Sanchez, A., Magaña, G., Partida, M.I., Sanchez, S.: Bi-dimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes. Chem. Eng. Res. Des. 107, 195–217 (2016)CrossRefGoogle Scholar
  16. 16.
    Palomo-Briones, R., López-Gutiérrez, I., Islas-Lugo, F., Galindo-Hernández, K.L., Munguía-Aguilar, D., Rincón-Pérez, J.A., Razo-Flores, E.: Agave bagasse biorefinery: processing and perspectives. Clean Technol. Environ. Policy 20(7), 1423–1441 (2018)CrossRefGoogle Scholar
  17. 17.
    Flores-Gómez, C.A., Escamilla Silva, E.M., Zhong, C., Dale, B.E., da Costa Sousa, L., Balan, V.: Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnol. Biofuels 11, 7 (2018)CrossRefGoogle Scholar
  18. 18.
    Barrera, I., Amezcua-Allieri, M.A., Martínez, Y., Aburto, J.: Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses| Elsevier Enhanced Reader. Chem. Eng. Res. Des. 107, 91–101 (2016)CrossRefGoogle Scholar
  19. 19.
    Núñez, H.M., Rodríguez, L.F., Khanna, M.: Agave for tequila and biofuels: an economic assessment and potential opportunities: economic assessment and opportunities of AGTVE. GCB Bioenergy 3(1), 43–57 (2011)CrossRefGoogle Scholar
  20. 20.
    Yan, X., Tan, D.K.Y., Inderwildi, O.R., Smith, J.A.C., King, D.A.: Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ. Sci. 4(9), 3110–3121 (2011)CrossRefGoogle Scholar
  21. 21.
    Jimenez-Plascencia, C.: Feedstock Composition Analysis Results. Animal Nutrition Laboratory of the University Center of Biological and Agricultural Sciences (CUCBA) University of Guadalajara (UdeG), Jalisco (2017). (in Spanish) Google Scholar
  22. 22.
    Tequila Regulatory Council: Personal Communication (2017) (in Spanish) Google Scholar
  23. 23.
    Intelligen Inc.: SuperPro Designer (Version 8.5) (2013)
  24. 24.
    Seider, W.D., Seader, J.D., Lewin, D.R.: Product and Process Design Principles: Synthesis, Analysis and Design, 3rd edn. Wiley, New York (2008)Google Scholar
  25. 25.
    Patterson, M.G.: What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 24(5), 377–390 (1996)CrossRefGoogle Scholar
  26. 26.
    Rodriguez, J.J.: Personal Communication (2015)Google Scholar
  27. 27.
    Sanchez, A., Magaña, G., Gomez, D., Solís, M., Banares-Alcantara, R.: Bidimensional sustainability analysis of lignocellulosic ethanol production processes. Method and case study. Biofuels Bioprod. Biorefin. 8(5), 670–685 (2014)CrossRefGoogle Scholar
  28. 28.
    Sanchez, A., Sevilla-Güitrón, V., Magaña, G., Gutierrez, L.: Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113, 165–179 (2013)CrossRefGoogle Scholar
  29. 29.
    Romero-García, J.M., Sanchez, A., Rendón-Acosta, G., Martínez-Patiño, J.C., Ruiz, E., Magaña, G., Castro, E.: An olive tree pruning biorefinery for Co-producing high value-added bioproducts and biofuels: economic and energy efficiency analysis. Bioenergy Res. 9(4), 1070–1086 (2016)CrossRefGoogle Scholar
  30. 30.
    Chee Tahir, A., Darton, R.C.: The process analysis method of selecting indicators to quantify the sustainability performance of a business operation. J. Clean. Prod. 18(16), 1598–1607 (2010)CrossRefGoogle Scholar
  31. 31.
    Agency, I.E., International Energy Agency: World Energy Outlook 2017. World Energy Outlook. (2017)
  32. 32.
    Interagency Working Group on Social Cost of Greenhouse Gases: Technical support document: technical update of the social cost of carbon for regulatory impact analysis under executive order 12866. (2016)
  33. 33.
    United States Environmental Protection Agency: Acid rain and related programs: 2009 emission, compliance, and market analyses (2009)
  34. 34.
    Mexican Deputies Chamber: Federal rights law. (2012)
  35. 35.
    Pan American Health Organization: Regional evaluation of the services of handling solid municipal waste. (2013)
  36. 36.
  37. 37.
    Thomsen, M.H., Thygesen, A., Jørgensen, H., Larsen, J., Christensen, B.H., Thomsen, A.B.: Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl. Biochem. Biotechnol. 129–132, 448–460 (2006)Google Scholar
  38. 38.
    Mojica, E.: Acid Pretreatment and Enzymatic Hydrolysis of Agro-Wastes (M. Sc.). Universidad Autónoma del Estado de Morelos (2013) (in Spanish) Google Scholar
  39. 39.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Lukas, J. (2002). Process design report for stover feedstock: lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratorio de Futuros en Bionergía, Unidad Guadalajara de Ingeniería AvanzadaCentro de Investigación y Estudios Avanzados (CINVESTAV)ZapopanMexico

Personalised recommendations