Chemical Pretreatments to Enrich the Acidogenic Phase in a System Coupled Packed Bed Reactor with a UASB Reactor Using Peels and Rotten Onion Waste

  • Jorge Arturo Domínguez-Maldonado
  • Liliana Alzate-Gaviria
  • Harvey Andrés Milquez-Sanabria
  • Raul Tapia-Tussell
  • Rosa M. Leal-Bautista
  • Elda Isaura España-GamboaEmail author
Original Paper


A large amount of onion wastes are produced by both domestically and industrially, making it necessary to search for a reuse process. These wastes causing odor and in some cases causes harm to the environment. At 2017, Mexico produced 1.6 million tons of which 10% are classified as organic waste. The aim of this study was to contribute to the reduction of onion peel residues, using chemical pretreatments (H2SO4, HCl, H3PO4 and NaOH) to enrich the acidogenic phase in the anaerobic digestion (AD) to improve the yield of methane in a system coupled packed bed reactor with an Up-flow Anaerobic Sludge Blanket reactor (UASB) using peels and rotten onion waste. In anaerobic digestion of white onion residues in a single stage (PBR1) presented inhibition due to the accumulation of VFA during the first days, which delay the onset of the methanogenic phase, which occurred 63 days after the start of the experiment. Pretreatment with H2SO4 (PBR2) decreased the start time of the methanogenic pathway, from 63 days to 35. In the same way, the coupling of the UASB reactor to the packed reactor (PBR3) allowed the decrease of the methanogenic step after 14 days, and the total time for this process was 35 days. The yield for PBR1 was 0.013 m3 CH4 kg VSrem−1, for PBR2 0.014 m3 CH4 kg VSrem−1 and PBR3 0.017 m3 CH4 kg VSrem−1. The total yield of PBR3 + UASB was 0.41 m3 CH4 kg VSrem−1.

Graphic Abstract


Onion waste Anaerobic digestion Coupled system Packed bed reactor Up-flow anaerobic sludge blanket reactor 



The authors want to thank to Q.I. Tanit Toledano Thompsom for technical support in the chromatographic techniques and Mexican Council for Science (CONACYT) and Inter-American Institute for Cooperation on Agriculture (IICA) for the financial support granted to carry out this study through Grant 372178 awarded for doctoral studies.


  1. 1.
    Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014). Google Scholar
  2. 2.
    Jeison, D.: Anaerobic digestion: closing cycles for sustainability. Rev. Environ. Sci. Bio/Technol. 14(4), 535–536 (2015). Google Scholar
  3. 3.
    Bello, M.O., Olabanji, I.O., Abdul-Hammed, M., Okunade, T.D.: Characterization of domestic onion wastes and bulb (Allium cepa L.): fatty acids and metals contents. Int. Food Res. J. 20(5), 2153–2158 (2013)Google Scholar
  4. 4.
    SIAP-SAGARPA: Anuario Estadístico de la Producción Agrícola. (2018)
  5. 5.
    Machado, J.E.O., Villamizar, F.: Evaluación de residuos y daños en hortalizas de alto consumo en centrales de abastos en Colombia. Revista Iberoamericana de Tecnología Postcosecha 5(1), 1–7 (2003)Google Scholar
  6. 6.
    Rinland, M.E., Gómez, M.A.: Isolation and characterization of onion degrading bacteria from onion waste produced in South Buenos Aires province, Argentina. World J. Microbiol. Biotechnol. 31(3), 487–497 (2015). Google Scholar
  7. 7.
    Turner, C., Turner, P., Jacobson, G., Almgren, K., Waldeback, M., Sjoberg, P., Karlsson, E.N., Markides, K.E.: Subcritical water extraction and [small beta]-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem. 8(11), 949–959 (2006). Google Scholar
  8. 8.
    Benítez, V., Mollá, E., Martín-Cabrejas, M.A., Aguilera, Y., López-Andréu, F.J., Cools, K., Terry, L.A., Esteban, R.M.: Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 66(1), 48–57 (2011). Google Scholar
  9. 9.
    González-Sáiz, J.-M., Esteban-Díez, I., Rodríguez-Tecedor, S., Pizarro, C.: Valorization of onion waste and by-products: MCR-ALS applied to reveal the compositional profiles of alcoholic fermentations of onion juice monitored by near-infrared spectroscopy. Biotechnol. Bioeng. 101(4), 776–787 (2008). Google Scholar
  10. 10.
    Romano, R.T.: Anaerobic digestion of onion processing waste and biochemical methods for enhanced anaerobic digestion. ProQuest (2008)Google Scholar
  11. 11.
    Onion, G.: Gills onions advanced energy recovery system. (2011). Accessed 18 Jan 2019
  12. 12.
    Ward, A., Lewis, D., Green, F.: Anaerobic digestion of algae biomass: a review. Algal Res. 5, 204–214 (2014)Google Scholar
  13. 13.
    Šmejkalová, P., Kužníková, V., Merna, J., Hermanová, S.: Anaerobic digestion of aliphatic polyesters. Water Sci. Technol. 73(10), 2386–2393 (2016)Google Scholar
  14. 14.
    Sanjaya, A.P., Cahyanto, M.N., Millati, R.: Mesophilic batch anaerobic digestion from fruit fragments. Renew. Energy 98, 135–141 (2016)Google Scholar
  15. 15.
    Ahmad, M.I., Ejaz, O., Ali, A., Durrani, M.A.Q.J., Khan, I.A.: Anaerobic digestion of waste from a slaughterhouse. J. Environ. Chem. Eng. 2(3), 1317–1320 (2014)Google Scholar
  16. 16.
    Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.L.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014)Google Scholar
  17. 17.
    Park, G.W., Kim, I., Jung, K., Seo, C., Han, J.-I., Chang, H.N., Kim, Y.-C.: Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment. Bioprocess Biosyst. Eng. 38(8), 1623–1627 (2015)Google Scholar
  18. 18.
    Demirer, G.N., Chen, S.: Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 40, 3542–3549 (2005)Google Scholar
  19. 19.
    Romano, R.T., Zhang, R.: Anaerobic digestion of onion residuals using a mesophilic anaerobic phased solids digester. Biomass Bioenergy 35(10), 4174–4179 (2011)Google Scholar
  20. 20.
    El-Kamah, H., Mahmoud, M., Tawfik, A.: Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater. Bioresour. Technol. 102, 7029–7035 (2011)Google Scholar
  21. 21.
    APHA: Standard methods for the examination of water and wastewater. In: American Public Health Association, Washington (1998)Google Scholar
  22. 22.
    (TAPPI), T.A.o.t.P.a.P.I.: TAPPI Standard T 203 om-93. Alpha-, beta- and gamma-cellulose in pulp and wood. In: P.O. Box 105113, Atlanta, GA 30348; 15 Technology Parkway South, Norcross, GA 30092. TAPPI (1988)Google Scholar
  23. 23.
    (TAPPI), T.A.o.t.P.a.P.I.: TAPPI Standard T 222 om-98. Acid insoluble lignin in wood and pulp. In. TAPPI (1998)Google Scholar
  24. 24.
    Devlin, D., Esteves, S., Dinsdale, R., Guwy, A.: The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge. Bioresour. Technol. 102(5), 4076–4082 (2011)Google Scholar
  25. 25.
    Penaud, V., Delgenes, J., Moletta, R.: Thermo-chemical pretreatment of a microbial biomass: influence of sodium hidroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Technol. 25(3), 258–263 (1999)Google Scholar
  26. 26.
    Kim, J., Park, C., Kim, T.-H., Lee, M., Kim, S., Kim, S.-W., Lee, J.: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95(3), 271–275 (2003)Google Scholar
  27. 27.
    Lenihan, P., Orozco, A., O’neill, E., Ahmad, M., Rooney, D., Walker, G.: Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 156(2), 395–403 (2010)Google Scholar
  28. 28.
    Zuo, Z., Wu, S., Zhang, W., Dong, R., Zuo, Z.: Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates. Bioresour. Technol. 162, 7 (2014)Google Scholar
  29. 29.
    Alzate-Gaviria, L., Pérez-Hernández, A., Nevárez-Moorillón, V., Rinderknecht-Seijas, N., Poggi-Varaldo, H.: Comparación de dos sistemas anaerobios acoplados para la biometanización de la fracción orgánica de residuos sólidos urbanos. Interciencia 28(8), 436–442 (2003)Google Scholar
  30. 30.
    Milquez-Sanabria, H., Blanco-Cocom, L., Alzate-Gaviria, L.: A fast linear predictive adaptive model of packed bed coupled with UASB reactor treating onion waste to produce biofuel. Microb. Cell Fact. 15(1), 167 (2016)Google Scholar
  31. 31.
    España-Gamboa, E., Mijangos-Cortes, J., Hernández-Zárate, G., Domínguez-Maldonado, J., Alzate-Gaviria, L.: Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnol. Biofuels 5, 9 (2012)Google Scholar
  32. 32.
    Purser, B.J.J., Thai, S.-M., Fritz, T., Esteves, S.R., Dinsdale, R.M., Guwy, A.J.: An improved titration model reducing over estimation of total volatile fatty acids in anaerobic digestion of energy crop, animal slurry and food waste. Water Res. 61, 9 (2014). Google Scholar
  33. 33.
    Dini, I., Tenore, G.C., Dini, A.: Chemical composition, nutritional value and antioxidant properties of Allium caepa L. Var. tropeana (red onion) seeds. Food Chem. 107, 613–621 (2008)Google Scholar
  34. 34.
    Dioha, I.J., Ikeme, C.H., Nafi’u, T., Soba, N.I., Yusuf, M.B.S.: Effect of carbon to nitrogen ratio on biogas production. Int. Res. J. Nat. Sci. 1(3), 1–10 (2013)Google Scholar
  35. 35.
    Triolo, J.M., Sommer, S.G., Moller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)Google Scholar
  36. 36.
    Taherzadeh, M., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9(9), 1621–1651 (2008)Google Scholar
  37. 37.
    Li, R., Chen, S., Li, X., Saifullah, J., He, Y., Zhu, B.: Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels 23(4), 2225–2228 (2009)Google Scholar
  38. 38.
    Jin, Y., Hu, Z., Wen, Z.: Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Waste Res. 43(14), 3493–3502 (2009)Google Scholar
  39. 39.
    Cassini, S., Andrade, M., Abreu, T., Keller, R., Goncalves, R.: Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: effect on total EPS and fractions. Waster Sci. Technol. 53(8), 51–58 (2006)Google Scholar
  40. 40.
    Ozkan, L., Erguder, T., Demirer, G.: Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield. Int. J. Hydrog. Energy 36(1), 382–389 (2011)Google Scholar
  41. 41.
    Kim, S., Lee, Y.: Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresour. Technol. 83(2), 165–171 (2002)Google Scholar
  42. 42.
    Sun, Y., Cheng, J.: Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour. Technol. 96(14), 1599–1606 (2005)Google Scholar
  43. 43.
    Meinita, M., Marhaeni, B., Winanto, T., Setyaningsih, D., Hong, Y.-K.: Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J. Ind. Eng. Chem. 27, 108–114 (2015)Google Scholar
  44. 44.
    Bolzonella, D., Battistoni, P., Mata-Alvarez, J., Cecchi, F.: Anaerobic digestion of organic solid wastes: process behaviour in transient conditions. Water Sci. Technol. 48(4), 1–8 (2003)Google Scholar
  45. 45.
    Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38(5), 569–582 (2006)Google Scholar
  46. 46.
    Browne, J.D., Allen, E., Murphy, J.D.: Improving hydrolysis of food waste in a leach bed reactor. Waste Manag. 33(11), 2470–2477 (2013)Google Scholar
  47. 47.
    Ahn, H.K., Smith, M., Kondrad, S., White, J.: Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Appl. Biochem. Biotechnol. 160(4), 965–975 (2010)Google Scholar
  48. 48.
    Cysneiros, D., Banks, C.J., Heaven, S., Karatzas, K.-A.G.: The effect of pH control and ‘hydraulic flush’on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour. Technol. 123, 263–271 (2012)Google Scholar
  49. 49.
    Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101(19), 7523–7528 (2010)Google Scholar
  50. 50.
    Jun, D., Yong-sheng, Z., Mei, H., Wei-Hong, Z.: Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J. Hazard. Mater. 163(2), 717–722 (2009)Google Scholar
  51. 51.
    Chugh, S., Chynoweth, D., Clarke, W., Pullammanappallil, P., Rudolph, V.: Degradation of unsorted municipal solid waste by a leach-bed process. Bioresour. Technol. 69(2), 103–115 (1999)Google Scholar
  52. 52.
    Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48(5), 901–911 (2013)Google Scholar
  53. 53.
    Koppar, A., Pullammanappallil, P.: Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp. Bioresour. Technol. 99(8), 2831–2839 (2008)Google Scholar
  54. 54.
    Lehtomäki, A., Huttunen, S., Lehtinen, T., Rintala, J.: Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour. Technol. 99(8), 3267–3278 (2008)Google Scholar
  55. 55.
    Xu, S.Y., Lam, H.P., Karthikeyan, O.P., Wong, J.W.: Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent. Bioresour. Technol. 102(4), 3702–3708 (2011)Google Scholar
  56. 56.
    España-Gamboa, E., Domínguez-Maldonado, J.A., Tapia-Tussell, R., Chale-Canul, J.S., Alzate-Gaviria, L.: Corn industrial wastewater (nejayote): a promising substrate in Mexico for methane production in a coupled system (APCR-UASB). Environ. Sci. Pollut. Res. 25(1), 712–722 (2018)Google Scholar
  57. 57.
    Aslanzadeh, S., Rajendran, K., Taherzadeh, M.J.: A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int. Biodeterior. Biodegrad. 95, 181–188 (2014)Google Scholar
  58. 58.
    Nkemka, V., Murto, M.: Two-stage anaerobic dry digestion of blue mussel and reed. Renew. Energy 50, 359–364 (2013)Google Scholar
  59. 59.
    Li, Y., Gao, M., Hua, D., Zhang, J., Zhao, Y., Mu, H., Xu, H., Liang, X., Jin, F., Zhang, X.: One-stage and two-stage anaerobic digestion of lipid-extracted algae. Ann. Microbiol. 65(3), 1465–1471 (2015)Google Scholar
  60. 60.
    Jagadabhi, P.S., Kaparaju, P., Rintala, J.: Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresour. Technol. 102(7), 4726–4733 (2011)Google Scholar
  61. 61.
    Takashima, M., Tanaka, Y.: Application of acidic thermal treatment for one-and two-stage anaerobic digestion of sewage sludge. Water Sci. Technol. 61(10), 2647–2654 (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jorge Arturo Domínguez-Maldonado
    • 1
  • Liliana Alzate-Gaviria
    • 1
  • Harvey Andrés Milquez-Sanabria
    • 1
  • Raul Tapia-Tussell
    • 1
  • Rosa M. Leal-Bautista
    • 2
  • Elda Isaura España-Gamboa
    • 3
    Email author
  1. 1.Renewable Energy UnitYucatan Center for Scientific Research (CICY)MéridaMexico
  2. 2.Water Research UnitYucatan Center for Scientific Research (CICY)CancúnMexico
  3. 3.Renewable Energy DepartmentInstituto Tecnológico Superior de MotulMotulMexico

Personalised recommendations