Advertisement

Bioconversion of Colloidal Chitin Using Novel Chitinase from Glutamicibacter uratoxydans Exhibiting Anti-fungal Potential by Hydrolyzing Chitin Within Fungal Cell Wall

  • Tayyaba Asif
  • Urooj Javed
  • Syeda Bushra Zafar
  • Asma Ansari
  • Shah Ali Ul QaderEmail author
  • Afsheen Aman
Original Paper
  • 48 Downloads

Abstract

Background

Chitin is a unique structural exopolysaccharide abundantly found in nature. This exopolysaccharide has a unique chemical structure that acts as a protective outermost covering for most of the crustaceans in aquatic ecosystem. This fortification is because of the insoluble nature of this exopolysaccharide which consist of a linear chain of β-(1→4)-linked-N-acetylglucosamine units. Chitin is hydrolyzed with the help of a hydrolase known as chitinase. Variety of microbial species have been explored for chitinase production. Chitinolytic microbial species can be alternatively used for degradation of chitin instead of chemical treatment in agricultural sector. This biological approach has lesser environmental impact because of its apparently safe nature.

Result

In the current study, bioprospecting of chitinase producing species was conducted and different chitinolytic bacterial strains were screened for chitinase production which could have anti-fungal potential. Bacterial isolates were identified based on polyphasic approach and the enzyme production was optimized using one-variable-at-a-time technique. Hyphal extension method was used for determination of anti-fungal potential of chitinase.Glutamicibacter uratoxydans was indigenously isolated and identified for chitinase production. G. uratoxydans is a novel bacterial species which has not been previously explored to produce chitinase or other hydrolases. G. uratoxydans biosynthesized chitinase utilizing colloidal chitin as a sole source of carbon. The chitinase biosynthesized by G. uratoxydans is effectively potent against Aspergillus fumigatus thus, suggesting that this extracellular enzyme could be used for the treatment of fungal infection caused by filamentous fungi.

Graphic Abstract

Keywords

Colloidal chitin N-Acetyl-β-d-glucosamine Chitinase Glutamicibacter uratoxydans 

Notes

Acknowledgements

Current research work was funded by Higher Education Commission (HEC), Islamabad, Pakistan through HEC-NRPU-Research Project No. 6549/Sindh/NRPU/R&D/2015.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article doesn’t contain any studies with human participants or animals.

Informed Consent

Informed consent was obtained from all the individual participants included in the current study.

References

  1. 1.
    Elieh-Ali-Komi, D., Hamblin, R.H.: Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4, 411–427 (2016)Google Scholar
  2. 2.
    Chernin, L., Chet, I.: Enzymes in the Environment: Activity, Ecology and Applications. Taylor & Francis, CRC Press, New York (2002)Google Scholar
  3. 3.
    Adrangi, S., Faramazi, M.A.: From bacteria to human: a journey into the world of chitinases. Biotechnol. Adv. 31, 1786–1795 (2013)CrossRefGoogle Scholar
  4. 4.
    Yan, N., Chen, X.: Don’t waste seafood waste. Nature 524, 155–157 (2015)CrossRefGoogle Scholar
  5. 5.
    Dahiya, N., Tewari, R., Hoondal, G.S.: Biotechnological aspects of chitinolytic enzymes: a review. Appl. Microbiol. Biotechnol. 71, 773–782 (2006)CrossRefGoogle Scholar
  6. 6.
    Revah-Moiseev, S., Carroad, P.A.: Conversion of the enzymatic hydrolysate of shellfish waste chitin to single-cell protein. Biotechnol. Bioeng. 23, 1067–1078 (1981)CrossRefGoogle Scholar
  7. 7.
    Mendonsa, E.S., Vartak, P.H., Rao, J.U., Deshpande, M.V.: An enzyme from Myrothecium verrucaria that degrades insect cuticle for biocontrol of Aedes aegypti mosquito. Biotechnol. Lett. 18, 373–376 (1996)CrossRefGoogle Scholar
  8. 8.
    Yan, Q., Fong, S.S.: Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour. Bioprocess 2, 31 (2015).  https://doi.org/10.1186/s40643-015-0057-5 CrossRefGoogle Scholar
  9. 9.
    Husson, E., Hadad, C., Huet, G., Laclef, S., Lesur, D., Lambertyn, V., Jamali, A., Gottis, S., Sarazin, C., Nhien, A.N.V.: The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem. 19, 4122–4131 (2017)CrossRefGoogle Scholar
  10. 10.
    Yan, Q., Fong, S.S.: Design and modularized optimization of one-step production of N-acetylneuraminic acid from chitin in Serratia marcescens. Biotechnol. Bioeng. 115, 2255–2267 (2018)CrossRefGoogle Scholar
  11. 11.
    Zhang, A., Wei, G., Mo, X., Zhou, N., Chen, K., Ouyang, P.: Enzymatic hydrolysis of chitin pretreatment by bacterial fermentation to obtain pure N-acetyl-d-glucosamine. Green Chem. 20, 2320–2327 (2018)CrossRefGoogle Scholar
  12. 12.
    Patil, R.S., Ghormade, V., Deshpande, M.V.: Chitinolytic enzymes: an exploration. Enzyme Microb. Technol. 26, 473–483 (2000)CrossRefGoogle Scholar
  13. 13.
    Salah, R., Michaud, P., Mati, F., Harrat, Z., Lounici, H., Abdi, N.: Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukemia cell line, THP-1. Int. J. Biol. Macromol. 52, 333–339 (2013)CrossRefGoogle Scholar
  14. 14.
    Parnell, J.J., Berka, R., Young, H.A., Sturino, J.M., Kang, Y., Barnhart, D.M., DiLeo, M.V.: From the lab to the farm: an industrial perspective of plant beneficial microorganism. Front. Plant Sci. 7, 1110 (2016)CrossRefGoogle Scholar
  15. 15.
    Veliz, E.A., Martnez-Hidalgo, P., Hirsch, A.M.: Chitinase producing bacteria and their role in biocontrol. AIMS Microbiol. 3, 689–705 (2017)CrossRefGoogle Scholar
  16. 16.
    Berini, F., Katz, C., Gruzdev, N., Casartelli, M., Tettamanti, G., Marinelli, F.: Microbial and viral chitinases: attractive biopesticides for integrated pest management. Biotechnol. Adv. 36, 818–838 (2018)CrossRefGoogle Scholar
  17. 17.
    Whitman, W., Goodfellow, M., Kampfer, P., Busse, J.H., Trujillo, M., Ludwig, W., Suzuki, K.: Bergey’s Manual of Systematic Bacteriology. Springer, New York (2012)Google Scholar
  18. 18.
    Murthy, N., Bleakley, B.: Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. (2012) http://ispub.com/IJMB/10/2/14186
  19. 19.
    Kobayashi, M., Matsuda, K.: The dextransucrase isoenzymes of Leuconostoc mesenteroides NRRL B-1299. Biochim. Biophys. Acta 370, 441–449 (1974)CrossRefGoogle Scholar
  20. 20.
    Lowry, O.H., Rosembrough, N.J., Fari, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  21. 21.
    Ye, X.Y., Ng, T.B.: Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem. Biophys. Res. Commun. 273, 1111–1115 (2000)CrossRefGoogle Scholar
  22. 22.
    Pervez, S., Siddiqui, N.N., Ansari, A., Aman, A., Qadeer, S.A.: Phenotypic and molecular characterization of Aspergillus species for the production of starch saccharifying amyloglucosidase. Ann. Microbiol. 65, 2287–2291 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, S.L., Shih, I.L., Liang, T.W., Wang, C.H.: Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J. Agric. Food Chem. 50, 2241–2248 (2002)CrossRefGoogle Scholar
  24. 24.
    Gomaa, Z.K.: Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J. Microbiol. 50, 103–111 (2012)CrossRefGoogle Scholar
  25. 25.
    Vaajee-Kolstad, G., Horn, S.J., Sorlie, M., Eijsink, V.G.H.: The chitinolytic machinery of Serratia marcescens-a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J. 280, 3028–3049 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Anjie, L., Hongyu, H., Tian, L., Qing, Y.: A potent chitinase from Bacillus subtilis for the efficient bioconversion of chitin-containing wastes. Int. J. Biol. Macromol. 116, 863–868 (2018)CrossRefGoogle Scholar
  27. 27.
    Dworkin, M.M.: The Prokaryotes: A Handbook on the Biology of Bacteria. Springer, New York (2006)CrossRefGoogle Scholar
  28. 28.
    Busse, H.J.: Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov., and Pseudoarthrobacter gen. nov., and emended descripition of Arthrobacter reseus. Int. J. Syst. Evol. Microbiol. 66, 09–37 (2016)CrossRefGoogle Scholar
  29. 29.
    Brzezinska, M.S., Jankiewicz, U., Burkowska, A., Walczak, M.: Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 68, 71–81 (2014)CrossRefGoogle Scholar
  30. 30.
    Ohishi, K., Yamagishi, M., Ohta, T., Suzuki, M., Izumida, H., Sano, H., Nishijama, M., Miwa, T.: Purification and properties of two chitinases from Vibrio alginolyticus H-8. J. Ferment. Bioeng. 82, 598–600 (1996)CrossRefGoogle Scholar
  31. 31.
    Leisner, J.J., Vogensen, F.K., Kollmann, J., Aideh, B., Vandamme, P., Vancanneyt, M., Ingmer, H.: α-Chitinase activity among lactic acid bacteria. Syst. Appl. Microbiol. 31, 151–156 (2008)CrossRefGoogle Scholar
  32. 32.
    Mejia-Saules, J.M., Waliszewski, K.N., Garcia, M.A., Cruz-Camarillo, R.: The use of crude shrimp shell powder for chitinase production by Serratia marcescens WF. Food Technol. Biotechnol. 44, 95–100 (2006)Google Scholar
  33. 33.
    Brzezinska, M.S., Walczak, M., Lalke-Porczyk, E., Donderski, W.: Utilization of shrimp shell waste as a substrate for the activity of chitinases produced by microorganisms. Pol. J. Environ. Stud. 19, 177–182 (2010)Google Scholar
  34. 34.
    Cheba, B.A., Zaghloul, T.I., El-Mahdy, A.R.: Demineralized crab and shrimp powder: cost effective medium for Bacillus sp. R2 growth and chitinase production. Procedia Manuf. 22, 413–419 (2018)CrossRefGoogle Scholar
  35. 35.
    Urbina-Salazar, A.D.R., Inca-Torres, A.R., Falcón-García, G., Carbonera-Aguilar, P.: Chitinase production by Trichoderma harzianum grown on a chitin rich mushroom by product formulated medium. Waste Biomass Valor. (2018).  https://doi.org/10.1007/s12649-018-0328-4 Google Scholar
  36. 36.
    Sahai, A.S., Manocha, M.S.: Chitinases of fungi and plants and their involvement in morphogenesis and host parasite interaction. FEMS Microbiol. Rev. 11, 317–338 (1993)CrossRefGoogle Scholar
  37. 37.
    Kopecny, J., Hodrova, B., Stewart, C.S.: The isolation and characterization of rumen chitinolytic bacterium. Lett. Appl. Microbiol. 23, 195–198 (1996)CrossRefGoogle Scholar
  38. 38.
    Gkargas, K., Mamma, D., Nedev, G., Topakas, E., Chritakopoulos, P., Kekos, D., Macris, B.J.: Studies on a N-acetyl-β-d-glucosaminidase produced by Fusarium oxysporum F3 grown in solid-state fermentation. Process Biochem. 39, 1599–1605 (2004)CrossRefGoogle Scholar
  39. 39.
    Singh, A.K., Mehta, G., Chhatpar, H.S.: Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Lett. Appl. Microbiol. 49, 708–714 (2009)CrossRefGoogle Scholar
  40. 40.
    Felse, P.A., Panda, T.: Production of microbial chitinase-A revisit. Bioprocess Eng. 23, 127–134 (2000)CrossRefGoogle Scholar
  41. 41.
    De-hui, D.A.I., Wei, L.I., Wei-lian, H.U., Xiao-ying, S.A.: Effect of medium composition on the synthesis of chitinase and chitin deacetylase from thermophilic Paenibacillus sp. Hul. Procedia Environ. Sci. 8, 620–628 (2011)CrossRefGoogle Scholar
  42. 42.
    Kuddus, S.M., Ahmad, R.I.Z.: Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J. Genet. Eng. Biotechnol. 11, 39–46 (2013)CrossRefGoogle Scholar
  43. 43.
    Aliabadi, N., Aminzadeh, S., Karkhane, A.A., Haghbeen, K.: Thermostable chitinase from Cohnella sp. A01: isolation and product optimization. Braz. J. Microbiol. 47, 931–940 (2016)CrossRefGoogle Scholar
  44. 44.
    Friedrich, J., Gradisar, H., Mandin, D., Chaumont, J.P.: Screening fungi for synthesis of keratinolytic enzymes. Lett. Appl. Microbiol. 28, 127–130 (1999)CrossRefGoogle Scholar
  45. 45.
    Cano-Salazar, L., Gregorio-Jáuregui, K.M., Juárez-Ordaz, A.J., Leon-Joublanc, E., Perez-Molina, A., Martínez-Hernández, J.L., Rodríguez-Martínez, J., Ilyina, A.: Thermodynamics of partitioning of chitinase and laminarinase in a soya lecithin liposome system and their antifungal effect against Fusarium oxysporum. Biocatal. Biotransfor. 29, 60–70 (2011)CrossRefGoogle Scholar
  46. 46.
    Zarei, M., Aminzadeh, S., Zolgharnein, H., Safehieh, A., Daliri, M., Noghabi, K.A., Ghoroghi, A., Motallebi, A.: Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz. J. Microbiol. 42, 1017–1029 (2011)CrossRefGoogle Scholar
  47. 47.
    Farag, A.M., Abd-Elnabey, H.M., Ibrahim, H.A.H., El-Shenawy, M.: Purification, characterization and antimicrobial activity of chitinase from marine-derived Aspergillus terreus. Egypt J. Aquat. Res. 42, 185–192 (2016)CrossRefGoogle Scholar
  48. 48.
    Free, S.J.: Fungal cell wall organization and biosynthesis. Adv. Genet. 81, 33–82 (2013)CrossRefGoogle Scholar
  49. 49.
    Arroyo, J., Farkaš, V., Sanz, A.B., Cabib, E.: Strengthening the fungal cell wall through chitin–glucan cross-links: effects on morphogenesis and cell integrity. Cell. Microbiol. 18, 1239–1250 (2016)CrossRefGoogle Scholar
  50. 50.
    Yoshimi, A., Miyazawa, K., Abe, K.: Cell wall structure and biogenesis in Aspergillus species. Biosci. Biotechnol. Biochem. 80, 1700–1711 (2016)CrossRefGoogle Scholar
  51. 51.
    Levin, D.E.: Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189, 1145–1175 (2011)CrossRefGoogle Scholar
  52. 52.
    Bélanger, R.R.: Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103–133 (2001)CrossRefGoogle Scholar
  53. 53.
    Brzezinska, M.S., Jankiewicz, U., Walczak, M.: Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int. Biodeterior. Biodegrad. 84, 104–110 (2013)CrossRefGoogle Scholar
  54. 54.
    Gupta, R., Saxena, R.K., Chaturvedi, P., Virdi, J.S.: Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. J. Appl. Bacteriol. 78, 378–383 (1995)CrossRefGoogle Scholar
  55. 55.
    Hollensteiner, J., Wemheuer, F., Harting, R., Kolarzyk, A.M., Diaz-Valerio, S.M., Poehlein, A., Brzuszkiewicz, E.B., Nesemann, K., Braus-Stromeyer, S.A., Braus, G.H., Daniel, R., Liesegang, H.: Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Front. Microbiol. 7, 2171 (2017)CrossRefGoogle Scholar
  56. 56.
    Rishad, K.S., Rebello, S., Shabanamol, P.S., Jisha, M.S.: Biocontrol potential of halotolerant bacterial chitinase from high yielding novel Bacillus pumilus MCB-7 autochthonous to mangrove ecosystem. Pestic. Biochem. Physiol. 137, 36–41 (2016)CrossRefGoogle Scholar
  57. 57.
    Li, J.G., Jiang, Z.Q., Xu, P., Sun, F., Guo, J.: Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. Biocontrol 53, 931–944 (2008)CrossRefGoogle Scholar
  58. 58.
    Vaaje-Kolstad, G., Houston, D.R., Riemen, A.H.K., Eijsink, V.G., Van-Aalten, D.M.: Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J. Biol. Chem. 280, 11313–11319 (2005)CrossRefGoogle Scholar
  59. 59.
    Someya, N., Nakajima, M., Hirayae, K., Hibi, T., Akutsu, K.: Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens Strain B2 against gray mold pathogen, Botrytis cinereal. J. Gen. Plant Pathol. 67, 312–317 (2001)CrossRefGoogle Scholar
  60. 60.
    Suryanto, D., Wahyuni, S., Siregar, E.B.M., Munir, E.: Utilization of chitinolytic bacterial isolates to control anthracnose of cocoa leaf caused by Colletotrichum gloeosporioides. Afr. J. Biotechnol. 13, 1631–1637 (2014)CrossRefGoogle Scholar
  61. 61.
    Cronin, D., Moënne-Loccoz, Y., Dunne, C., O’Gara, F.: Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur. J. Plant Pathol. 103, 433–440 (1997)CrossRefGoogle Scholar
  62. 62.
    Sindhu, S.S., Dadarwal, K.R.: Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol. Res. 156, 353–358 (2001)CrossRefGoogle Scholar
  63. 63.
    Kopparapu, N.K., Liu, Z., Fei, F., Yan, Q., Jiang, Z.: Purification and characterization of a chitinase (sAMC) with antifungal activity from seeds of Astragalus membranaceus. Process Biochem. 46, 1370–1374 (2011)CrossRefGoogle Scholar
  64. 64.
    Lopez, R.C., Gomez-Gomez, L.: Isolation of anew fungi and wound-induced chitinase class in corms of Crocus sativus. Plant Physiol. Biochem. 47, 426–434 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tayyaba Asif
    • 1
  • Urooj Javed
    • 1
  • Syeda Bushra Zafar
    • 1
  • Asma Ansari
    • 1
  • Shah Ali Ul Qader
    • 2
    Email author
  • Afsheen Aman
    • 1
  1. 1.The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE)University of KarachiKarachiPakistan
  2. 2.Department of BiochemistryUniversity of KarachiKarachiPakistan

Personalised recommendations