Advertisement

Amendment of Vermicompost by Phosphate Rock, Steel Dust, and Halothiobacillus neapolitanus

  • Somayeh Rahbar Shiraz
  • Bahi JaliliEmail author
  • Mohamad Ali Bahmanyar
Original Paper
  • 1 Downloads

Abstract

The aim of the present study was to improve the nutrient content of vermicompost (VC) and make it a more suitable alternative to chemical fertilizers. VC samples were inoculated with Halothiobacillus neapolitanus and were subsequently amended with 5% mineral sulfur or left untreated as control. Both groups were supplemented with 5% or 10% of phosphate rock (PR) powder or steel dust at the final concentrations of 2.5% or 5%. Changes in pH, electrical conductivity (EC), phosphorous (P) and iron (Fe) contents of VC samples were monitored in a 60-day post-treatment period, in 20-day intervals. The sulfur containing samples, when compared with the untreated control, showed significant decrease in pH, which fell within the range of 4.6–5. The maximum EC values were observed in samples containing 5% sulfur with the highest amount of PR (S5P10) or steel dust but it did not exceed 3 dS m−1. A significant increase of 130% in P content was observed in the S5P10 sample and the highest concentration of Fe, 45%, was measured in the S5Fe5 sample after 40 days of incubation which was followed by a slight reduction. H. neapolitanus can provide a condition for solubilization of P and Fe from PR and steel dust, respectively, to improve the P and Fe content of VC.

Graphic Abstract

Keywords

Phosphate rock Mineral sulfur Steel dust H. neapolitanus Vermicompost 

Notes

References

  1. 1.
    Moshiri, F., Samavat, S., Balali, M. R.: Soil organic carbon: a key factor of sustainable agriculture in Iran. Global Symposium on Soil Organic Carbon, Rome, 21–23 March 2017Google Scholar
  2. 2.
    Gharaie, H.: Effect of lemon waste on soil pH and availability of micronutrient in calcareous soils of Fars province, southern Iran. International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 449–452 (2008)Google Scholar
  3. 3.
    Xue, Y., Xia, H., Christie, P., Zhang, Z., Li, L., Tang, C.: Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot. 117, 363–377 (2016)CrossRefGoogle Scholar
  4. 4.
    Swati, A., Hait, S.: Fate and bioavailability of heavy metals during vermicomposting of various organic wastes-A review. Process Saf. Environ. Prot. 109, 30–45 (2017)CrossRefGoogle Scholar
  5. 5.
    de Souzaa, M.E.P., de Carvalhoa, A.M.X., Deliberalia, D.D.C., Juckscha, I., Brown, G.G., Mendonca, E.S., Cardoso, I.M.: Vermicomposting with rock powder increases plant growth. Appl. Soil. Ecol. 69, 56–60 (2013)CrossRefGoogle Scholar
  6. 6.
    Coulibaly, S., Edoukou, F.E., Kouassi, K.I., Barsan, N., Nedeff, V., Zoro, I.A.: Vermicompost utilization: a way to food security in rural area. Heliyon 4, e01104 (2018)CrossRefGoogle Scholar
  7. 7.
    Joshi, R., Singh, J., vig, A.P.: Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio. 14, 137–159 (2015)CrossRefGoogle Scholar
  8. 8.
    Hashemimajd, K., Golchin, A.: The effect of iron-enriched vermicompost on growth and nutrition of tomato. J. Agric. Sci. Technol. 11, 613–621 (2009)Google Scholar
  9. 9.
    Mupondi, L.T., Mnkeni, P.N.S., Muchaonyerwa, P., Mupambwa, H.A.: Vermicomposting manure-paper mixture with igneous rock phosphate enhances biodegradation, phosphorus bioavailability and reduces heavy metal concentrations. Heliyon 4, e00749 (2018)CrossRefGoogle Scholar
  10. 10.
    Busato, J.G., Lima, L.S., Aguilar, N.O., Canellas, L.P., Olivares, F.L.: Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresour. Technol. 110, 390–395 (2012)CrossRefGoogle Scholar
  11. 11.
    Kaushik, P., Yadav, Y.K., Dilbaghi, N., Garg, V.K.: Enrichment of vermicomposts prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria. Environmentalist 28, 283–287 (2008)CrossRefGoogle Scholar
  12. 12.
    Parastesh, F., Alikhani, H.A., Etesami, H.: Vermicompost enriched with phosphate-solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. J. Clean. Prod. 221, 27–37 (2019)CrossRefGoogle Scholar
  13. 13.
    Rajasekar, K., Daniel, T., Karmegan, N.: Microbial enrichment of vermicompost. ISRN Soil Sci. 2012, 13 (2012)CrossRefGoogle Scholar
  14. 14.
    Karmegam, N., Rajasekar, K.: Enrichment of biogas slurry vermicompost with Azotobacter chroococcum and Bacillus megaterium. J. Environ. Sci. Technol. 5, 91–108 (2012)CrossRefGoogle Scholar
  15. 15.
    Mahanta, K., Jha, D.K., Rajkhowab, D.J., Kumar, M.: Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biol. Agric. Hortic. 28, 241–250 (2012)CrossRefGoogle Scholar
  16. 16.
    Padmavathiamma, P.K., Li, L.Y., Kumari, U.R.: An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresour. Technol. 99, 1672–1681 (2008)CrossRefGoogle Scholar
  17. 17.
    Bosecker, K.: Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997)CrossRefGoogle Scholar
  18. 18.
    Xiao, C.Q., Chi, R.A., Fang, Y.J.: Effects of Acidiphilium cryptum on biosolubilization of rock phosphate in the presence of Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China 23, 2153–2159 (2013)CrossRefGoogle Scholar
  19. 19.
    Mohammady, Aria M., Lakzian, A., Haghnia, G.H., Berenji, A.R., Besharati, H., Fotovat, A.: Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresour. Technol. 101, 551–554 (2010)CrossRefGoogle Scholar
  20. 20.
    Atlas, R.M.: Handbook of Microbiological Media, 4th edn. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  21. 21.
    Nelson, D.W., Sommers, L.E.: Total carbon and organic carbon. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis. American Society Agronomy, Madison (1982)Google Scholar
  22. 22.
    Murphy, J., Riley, J.P.: A modified single solution for the determination of phosphorus in natural waters. Anal. Chem. Acta 27, 31–36 (1962)CrossRefGoogle Scholar
  23. 23.
    Bremner, J.M., Mulvaney, R.G.: Nitrogen total. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis, pp. 575–624. American Society of Agronomy, Madison (1982)Google Scholar
  24. 24.
    Garg, V.K., Kaushik, P.: Vermistabilization of textile mill sludge spiked with poultry droppings by an epigeic earthworm Eisenia foetida. Bioresour. Technol. 96, 1063–1071 (2005)CrossRefGoogle Scholar
  25. 25.
    Jordao, C.P., Fialho, L.L., Neves, J.C.L., Cecon, P.R., Mendonca, E.S., Fontes, R.L.F.: Reduction of heavy metal contents in liquid effluents by vermicomposts and the use of the metal-enriched vermicomposts in lettuce cultivation. Bioresour. Technol. 98, 2800–2813 (2007)CrossRefGoogle Scholar
  26. 26.
    Analytical Software. 2007. Statistix: version 2. Florida: Analytical Software (2007)Google Scholar
  27. 27.
    Lime, S.L., Wua, T.Y., Sim, E.Y.S., Lima, P.N., Clarke, C.: Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecol. Eng. 4, 60–64 (2012)CrossRefGoogle Scholar
  28. 28.
    Gu, W., Zhang, F., Xu, P., Tang, S., Xie, K., Huang, X., Huang, Q.: Effects of sulphur and Thiobacillus thioparus on cow manure aerobic composting. Bioresour. Technol. 102, 6529–6535 (2011)CrossRefGoogle Scholar
  29. 29.
    Lv, B., Zhang, D., Cui, Y., Yin, F.: Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 268, 408–414 (2018)CrossRefGoogle Scholar
  30. 30.
    Lazcano, C., Gómez-Brandon, M., Dominguez, J.: Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72, 1013–1019 (2008)CrossRefGoogle Scholar
  31. 31.
    Atiyeh, R.M., Dominguez, J., Subler, S., Edwards, C.A.: Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei. Bouche) and the effects on seedling growth. Pedobiologia 44, 709–724 (2000)CrossRefGoogle Scholar
  32. 32.
    Ghosh, S., Goswami, A.J., Ghosh, G.K., Pramanik, P.: Quantifying the relative role of phytase and phosphatase enzymes in phosphorus mineralization during vermicomposting of fibrous tea factory waste. Ecol. Eng. 116, 97–103 (2018)CrossRefGoogle Scholar
  33. 33.
    Edward, C.A.: Introduction, history, and potential of vermicomposting technology. In: Edwards, C.A., Arancon, N.Q., Sherman, R. (eds.) Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management. CRC Press, Boca Raton (2011)Google Scholar
  34. 34.
    Lokman, M.C.J., Latifah, A.M., Puziah, A.L.: Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iran. J. Environ. Health Sci. Eng. 10, 17 (2013)CrossRefGoogle Scholar
  35. 35.
    Ali, M.N., Chakraborty, S., Saha, P., Lodh, N.: Improvement of vermicompost: Influence of feeding materials and inoculation of nitrogen-fixing and phosphate-solubilizing bacteria. In: Sabu, A., Augustine, A. (eds.) Prospects in Bioscience. Springer, Delhi (2013)Google Scholar
  36. 36.
    Yamanaka, T.: Chemolithoautotrophic Bacteria Biochemistry and Environmental Biology. Springer, Tokyo (2008)Google Scholar
  37. 37.
    Wang, Y.N., Tsang, Y.F., Wang, L., Fu, X., Li, H., Hu, J., Le, Y.: Influence of reduced sulfur on carbon fixation efficiency of Halothiobacillus neapolitanus and its mechanism. Chem. Eng. 326, 249–256 (2017)CrossRefGoogle Scholar
  38. 38.
    Pokorna, D., Zabranska, J.: Sulfur-oxidizing bacteria in environmental technology. Biotechnol. Adv. 33, 1246–1259 (2015)CrossRefGoogle Scholar
  39. 39.
    Avdalovic, J., Beškoski, V., Gojgic-Cvijovic, G., Mattinen, M.L., Stojanovic, M., Zildzovic, S., Vrvic, M.M.: Microbial solubilization of phosphorus from phosphate rock by iron-oxidizing Acidithiobacillus sp B2. Miner. Eng. 72, 17–22 (2015)CrossRefGoogle Scholar
  40. 40.
    Yang, Z.H., Stoven, K., Haneklaus, S., Singh, B.R., Schnug, E.: Elemental sulfur oxidation by Thiobacillus spp and aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 20, 71–79 (2010)CrossRefGoogle Scholar
  41. 41.
    Stamford, N.P., Santos, P.R., Santos, C.E.R.S., Freitas, A.D.S., Dias, S.H.L., Lira Jr., M.A.: Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus in a Brazilian tableland acidic soil grown with yam bean. Bioresour. Technol. 98, 1311–1318 (2007)CrossRefGoogle Scholar
  42. 42.
    Malinska, K., Golanska, M., Caceres, R., Rorat, A., Weisser, P., Slezak, E.: Biochar amendment for integrated composting and vermicomposting of sewage sludge—The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour. Technol. 225, 206–214 (2017)CrossRefGoogle Scholar
  43. 43.
    Adhami, E., Hosseini, S., Owliaie, H.: Forms of phosphorus of vermicompost produced from leaf compost and sheep dung enriched with rock phosphate. Int. J. Recycl. Org. Waste Agric. 3, 68 (2014)CrossRefGoogle Scholar
  44. 44.
    Hanc, A., Chadimova, Z.: Nutrient recovery from apple pomace waste by vermicomposting technology. Bioresour. Technol. 168, 240–244 (2014)CrossRefGoogle Scholar
  45. 45.
    Odongo, N., Hyoung, K., Choi, H., van Straaten, P., McBride, W., Romney, D.: Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresour. Technol. 98, 2911–2918 (2007)CrossRefGoogle Scholar
  46. 46.
    Ghani, A., Rajan, S.S.S., Lee, A.: Enhancement of phosphate rock solubility through biological processes. Soil Biol. Biochem. 26, 127–136 (1994)CrossRefGoogle Scholar
  47. 47.
    Vestola, E.A., Kuusenaho, M.K., Närhic, H.M., Tuovinen, O.H., Puhakka, J.A., Plumb, J.J., Kaksonen, A.H.: Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103, 74–79 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Soil Science, Faculty of Crop SciencesSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations