Value Addition of Waste Cotton: Effect of Nanofibrillated Cellulose on EVA/EVOH Toughened Polylactic Acid System

  • V. H. SangeethaEmail author
  • T. O. Varghese
  • S. K. Nayak
Original Paper


The development of bionanocomposites is a promising approach in the current scenario with the urge to maintain environmental sustainability. The present study investigates the effect of nanocellulose on different properties of EVA/EVOH toughened Polylactic acid (PLA). Nanocellulose was isolated from waste cotton via an environmental friendly technique called steam explosion. Nanocellulose filled toughened PLA was prepared via melt mixing technique using twin screw extruder followed by injection molding. Prepared bionanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis etc. The addition of nanofibrillated cellulose up to 2 wt% retained the tensile strength of PLA/EVA/EVOH ternary blend systems whereas further weight loadings decreased the tensile strength significantly. Also, the addition of nanocellulose up to 2 wt% loading increased the modulus compared to PLA. The addition of nanofibrillated cellulose increased the stiffness of the composite. The percentage elongation at break showed 214% increase in the case of PLA/EVA/EVOH/NC 2 system in comparison to virgin PLA due to the plasticisation effect of EVA/EVOH together with the strong interactions of hydroxyl groups of nanocellulose. The impact strength was increased up to 89% by the addition of 2 wt% of nanocellulose. DSC studies revealed that the crystallization temperature decreased by the addition of nanocellulose up to 2 wt% in PLA matrix. This means that the nanocellulose acted as a nucleating agent such that it initiates crystallization phenomenon at a lower Tcc. The prepared bionanocomposite holds significant potential for sustainable PLA based packaging solutions.

Graphic Abstract


Polylactic acid Bionanocomposite Nanocellulose Ethylene vinyl acetate Ethylene vinyl alcohol 



  1. 1.
    Shchipunov, Y.: Bionanocomposites: green sustainable materials for the near future. Pure Appl. Chem. 84(12), 2579–2607 (2012)CrossRefGoogle Scholar
  2. 2.
    Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)CrossRefGoogle Scholar
  3. 3.
    Bouthegourd, E., Rajisha, K., Kalarical, N., Saiter, J.M., Thomas, S.: Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater. Lett. 65, 3615–3617 (2011)CrossRefGoogle Scholar
  4. 4.
    Yu, J., Ai, F., Dufresne, A., Gao, S., Huang, J., Chang, P.R.: Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol. Mater. Eng. 293, 763–770 (2008)CrossRefGoogle Scholar
  5. 5.
    Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M.: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 87, 1596–1605 (2012)CrossRefGoogle Scholar
  6. 6.
    Liu, H., Zhang, J.: Research progress in toughening modification of poly(lactic acid). J. Polym. Sci. B 49, 1051 (2011)CrossRefGoogle Scholar
  7. 7.
    Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., Dufresne, A.: Methods for extraction of nanocellulose from various sources. In: Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., Dufresne, A. (eds.) Handbook of Nanocellulose and Cellulose Nanocomposites. Wiley, Hoboken (2017)CrossRefGoogle Scholar
  8. 8.
    Naghdi, T., Merkoç, A.: Nanocellulose in sensing and biosensing. Chem. Mater. 29, 5426 (2017)CrossRefGoogle Scholar
  9. 9.
    Dufresne, A.: Nanocellulose: from Nature to High Performance Tailored Materials, vol. 67, 2nd edn, p. 353. De Gruyter, Berlin (2012)CrossRefGoogle Scholar
  10. 10.
    Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941 (2011)CrossRefGoogle Scholar
  11. 11.
    Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T.: Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8, 1934–1941 (2007)CrossRefGoogle Scholar
  12. 12.
    Yu, F., Huang, H.X.: Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym. Test. 45, 107–113 (2015)CrossRefGoogle Scholar
  13. 13.
    Gu, J.R.S.Y., Dong, B.: Melt rheology of polylactide/montmorillonite nanocomposites. J. Polym. Sci. B 45, 3189–3196 (2007)CrossRefGoogle Scholar
  14. 14.
    Shirazi, A.R., Ahmadi, Z., Garmabi, H.: Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iran. Polym. J. 27, 785–794 (2018)CrossRefGoogle Scholar
  15. 15.
    Perića, M., Putza, R., Paulik, C.: Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). Eur. Polym. J. 114, 426–433 (2019)CrossRefGoogle Scholar
  16. 16.
    Tanpichai, S., Wootthikanokkhan, J.: Reinforcing abilities of microfibers and nanofibrillated cellulose in poly (lactic acid) composites. Sci. Eng. Compos. Mater. 25, 395–401 (2018)CrossRefGoogle Scholar
  17. 17.
    Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., Takzare, Z.: Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 35, 73–79 (2014)CrossRefGoogle Scholar
  18. 18.
    Fujisawa, S., Saito, T., Kimura, S., Iwata, T., Isogai, A.: Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromol 14, 1541–1546 (2013)CrossRefGoogle Scholar
  19. 19.
    Chang, B.P., Mohanty, A.K., Misra, M.: Tuning the compatibility to achieve toughened biobased poly(lactic acid)/poly(butylene terephthalate) blends. RSC Adv. 8, 27709–27724 (2018)CrossRefGoogle Scholar
  20. 20.
    Orellana, J.L., Wichhart, D., Kitchens, C.L.: Mechanical and optical properties of polylactic acid films containing surfactant-modified cellulose nanocrystals. J. Nanomater. (2018). Google Scholar
  21. 21.
    Yew, G.H., Yusof, A.M.M., Ishak, Z.A.M., Ishiaku, U.S.: Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym. Degrad. Stab. 90, 488–500 (2005)CrossRefGoogle Scholar
  22. 22.
    Sangeetha, V.H., Valapa, R.B., Nayak, S.K., Varghese, T.O.: Investigation on the influence of EVA Content on the mechanical and thermal characteristics of poly(lactic acid) blends. J. Polym. Environ. 26, 1–14 (2018)CrossRefGoogle Scholar
  23. 23.
    Sangeetha, V.H., Valapa, R.B., Nayak, S.K., Varghese, T.O.: Super toughened renewable poly (lactic acid) based ternary blends system: effect of degree of hydrolysis of ethylene vinyl acetate on impact and thermal properties. RSC Adv. 6, 72681–72691 (2016)CrossRefGoogle Scholar
  24. 24.
    Sangeetha, V.H., Valapa, R.B., Nayak, S.K., Varghese, T.O.: Toughening of polylactic acid using styrene ethylene butylene styrene: mechanical, thermal, and morphological studies. Polym. Eng. Sci. 56, 669–675 (2016)CrossRefGoogle Scholar
  25. 25.
    Ma, P., Bogaerds, D.G., Goossens, J.G.P., Spoelstra, A.B., Zhang, Y., Lemstra, P.J.: Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents Eur. Polym. J. 48, 146–154 (2012)Google Scholar
  26. 26.
    Cherian, B.M., Leão, A.L., Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M.: Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010)CrossRefGoogle Scholar
  27. 27.
    Cheng, Q., Wang, S., Rials, T.G., Lee, S.H.: Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14, 593–602 (2007)CrossRefGoogle Scholar
  28. 28.
    Kemala, E., Budianto, B.: Soegiyono: preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ɛ-caprolactone) with poly(vinyl alcohol) as emulsifier. Arab J. Chem. 5, 103–108 (2012)CrossRefGoogle Scholar
  29. 29.
    Kargarzadeh, H., Huang, J., Lin, N., Ahmad, I., Mariano, M., Dufresne, A., Thomas, S., Gałęski, A.: Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 87, 197–227 (2018)CrossRefGoogle Scholar
  30. 30.
    Lee, S.-Y., Mohan, D.J., Kang, I.-A., Doh, G.-H., Lee, S., Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym. 10, 77–82 (2009)CrossRefGoogle Scholar
  31. 31.
    Yang, W., Dominici, F., Fortunati, E., Kenny, J.M., Puglia, D.: Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly (lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Adv. 5, 32350–32357 (2015)CrossRefGoogle Scholar
  32. 32.
    Immonen, K., Lahtinen, P., Pere, J.: Effects of surfactants on the preparation of nanocellulose-PLA composites. Bioengineering 4, 91 (2017)CrossRefGoogle Scholar
  33. 33.
    Valapa, R.B., Pugazhenthi, G., Katiyar, V.: Fabrication and characterization of sucrose palmitate reinforced poly (lactic acid) bionanocomposite films. J. Appl. Polym. Sci. 132, 41320 (2015)CrossRefGoogle Scholar
  34. 34.
    Jamshidi, K., Hyon,  S.H., Ikada, Y.: Thermal characterization of polylactides. Polymer 29, 2229–2234 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • V. H. Sangeetha
    • 1
    Email author
  • T. O. Varghese
    • 2
  • S. K. Nayak
    • 3
  1. 1.CIPET: SARP - Advanced Polymer Design and Development Research Laboratory (APDDRL)BengaluruIndia
  2. 2.Central Institute of Plastics Engineering and Technology: Institute of Plastics Technology (CIPET:IPT)ChennaiIndia
  3. 3.Central Institute of Plastics Engineering and Technology (CIPET)ChennaiIndia

Personalised recommendations