Advertisement

Assessment of the Behaviour of a Commercial Gasification Plant During Load Modulation and Feedstock Moisture Variation

  • Daniele AntoliniEmail author
  • Clemens Hollenstein
  • Stefan Martini
  • Francesco Patuzzi
  • Christopher Zemann
  • Wolfgang Felsberger
  • Marco Baratieri
  • Markus Gölles
Original Paper

Abstract

Fixed-bed biomass gasification coupled with internal combustion engines allows an efficient exploitation of biomass for the combined production of heat and power (CHP) at small scale with increased economic viability with respect to combustion-based CHP systems. The main barrier on the way towards a wider market distribution is represented by the fact that a robust practical operation of state-of-the-art fixed-bed biomass gasification systems is limited to very specific fuel properties and steady-state operation. The aim of this work is twofold. On the one hand, it presents the results of a series of test runs performed in a monitored commercial plant under different process conditions, in order to assess its behaviour during load modulation and fuel property variations. On the other hand, an in-house developed thermodynamic equilibrium model was applied to predict the behaviour of the gasification reactor. This gasification model could be used for the development of a model-based control strategy in order to increase the performance of the small-scale gasification system. To assess the general operational behaviour of the whole gasification system an experimental one-week-long test run has been performed by BIOENERGY 2020+ and the Free University of Bozen-Bolzano as round robin test. The plant has been tested under different operating conditions, in particular, varying the load of the engine and the moisture content of the feedstock. The outcomes shown in the present work provide a unique indication about the behaviour of a small-scale fix-bed gasifier working in conditions different from the nominal ones.

Keywords

Biomass gasification Thermodynamic equilibrium model Electric power modulation Fuel flexibility 

Notes

Aknowledgements

The authors want to thank the Austrian Research Promotion Agency for the financial support to the research project “Increased fuel flexibility and modulation capability of fixed-bed biomass gasifiers by means of model-based control” (FlexiFuelGasControl). The project is coordinated by BIOENERGY 2020+ GmbH (BE2020+) and involves Graz University of Technology, Institute for Automation and Control (TUG), the Free University of Bozen-Bolzano (UNIBZ) and the URBAS Maschinenfabrik GmbH (URBAS) as project partners.

References

  1. 1.
    Bocci, E., Sisinni, M., Moneti, M., Vecchione, L., Di Carlo, A., Villarini, M.: State of art of small scale biomass gasification power systems: a review of the different typologies. Energy Proc. 45, 247–256 (2014)CrossRefGoogle Scholar
  2. 2.
    Patuzzi, F., Prando, D., Vakalis, S., Rizzo, A.M., Chiaramonti, D., Tirler, W., Mimmo, T., Gasparella, A., Baratieri, M.: Small-scale biomass gasification CHP systems: comparative performance assessment and monitoring experiences in South Tyrol (Italy). Energy. 112, 285–293 (2016)CrossRefGoogle Scholar
  3. 3.
    IEA Bioenergy task 33—gasification of biomass and waste: workshop: small scale gasification for CHP, Innsbruck (2017)Google Scholar
  4. 4.
    Basu, P.: Chapter 8—Biomass Handling. Elsevier, Amsterdam (2010)Google Scholar
  5. 5.
    Urchueguía, J.F., Alakangas, E., Berre, I., Cabeza, L.F., Grammelis, P., Haslinger, W., Hellmer, R., Mugnier, D., Papillon, P., Stryi-Hipp, G., van Helden, W.: Common implementation roadmap for renewable heating and cooling technologies. Technical Report 1, 1–10 (2014)Google Scholar
  6. 6.
    Kumar, A., Kumar, R.: Performance evaluation of downdraft gasifier for generation of engine quality gas. Nat. Resour. Conserv. 1, 50–54 (2013)Google Scholar
  7. 7.
    Centeno, F., Mahkamov, K., Silva Lora, E.E., Andrade, R.V.: Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renew. Energy. 37, 97–108 (2012)CrossRefGoogle Scholar
  8. 8.
    Chaves, L.I., Da Silva, M.J., De Souza, S.N.M., Secco, D., Rosa, H.A., Nogueira, C.E.C., Frigo, E.P.: Small-scale power generation analysis: downdraft gasifier coupled to engine generator set. Renew. Sustain. Energy Rev. 58, 491–498 (2016)CrossRefGoogle Scholar
  9. 9.
    Keche, A.J.R., Amba Prasad Rao, G.: Experimental evaluation of a 35 kVA downdraft gasifier. Front. Energy. 7, 300–306 (2013)CrossRefGoogle Scholar
  10. 10.
    Jayah, T.H., Aye, L., Fuller, R.J., Stewart, D.F.: Computer simulation of a downdraft wood gasifier for tea drying. Biomass Bioenerg. 25, 459–469 (2003)CrossRefGoogle Scholar
  11. 11.
    Henriksen, U., Ahrenfeldt, J., Jensen, T.K., Gøbel, B., Bentzen, J.D., Hindsgaul, C., Sørensen, L.H.: The design, construction and operation of a 75 kW two-stage gasifier. Energy. 31, 1542–1553 (2006)CrossRefGoogle Scholar
  12. 12.
    Hernández, J.J., Aranda-Almansa, G., Bula, A.: Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time. Fuel Process. Technol. 91, 681–692 (2010)CrossRefGoogle Scholar
  13. 13.
    Biagini, E., Barontini, F., Tognotti, L.: Gasification of agricultural residues in a demonstrative plant: corn cobs. Bioresour. Technol. 173, 110–116 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, F., Dong, Y., Dong, L., Guo, C.: Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: an experimental study. Int. J. Hydrog. Energy 39, 5625–5633 (2014)CrossRefGoogle Scholar
  15. 15.
    Patel, V.R., Upadhyay, D.S., Patel, R.N.: Gasification of lignite in a fixed bed reactor: influence of particle size on performance of downdraft gasifier. Energy. 78, 323–332 (2014)CrossRefGoogle Scholar
  16. 16.
    Sheth, P.N., Babu, B.V.: Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresour. Technol. 100, 3127–3133 (2009)CrossRefGoogle Scholar
  17. 17.
    Kirsanovs, V., Blumberga, D., Dzikevics, M., Kovals, A.: Design of experimental investigations on the effect of equivalence ratio, fuel moisture content and fuel consumption on gasification process. Energy Proc. 95, 189–194 (2016)CrossRefGoogle Scholar
  18. 18.
    Kirsanovs, V., Blumberga, D., Veidenbergs, I., Rochas, C., Vigants, E., Vigants, G.: Experimental investigation of downdraft gasifier at various conditions. Energy Proc. 128, 332–338 (2017)CrossRefGoogle Scholar
  19. 19.
    Sharma, A.K.: Experimental study on 75 kWth downdraft (biomass) gasifier system. Renew. Energy. 34, 1726–1733 (2009)CrossRefGoogle Scholar
  20. 20.
    Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363–384 (2017)CrossRefGoogle Scholar
  21. 21.
    Susastriawan, A.A.P., Saptoadi, H.: Purnomo: small-scale downdraft gasifiers for biomass gasification: a review. Renew. Sustain. Energy Rev. 76, 989–1003 (2017)CrossRefGoogle Scholar
  22. 22.
    Ahmed, T.Y., Ahmad, M.M., Yusup, S., Inayat, A., Khan, Z.: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review. Renew. Sustain. Energy Rev. 16, 2304–2315 (2012)CrossRefGoogle Scholar
  23. 23.
    Baruah, D., Baruah, D.C.: Modeling of biomass gasification: a review. Renew. Sustain. Energy Rev. 39, 806–815 (2014)CrossRefGoogle Scholar
  24. 24.
    Patra, T.K., Sheth, P.N.: Biomass gasification models for downdraft gasifier: a state-of-the-art review. Renew. Sustain. Energy Rev. 50, 583–593 (2015)CrossRefGoogle Scholar
  25. 25.
    La Villetta, M., Costa, M., Massarotti, N.: Modelling approaches to biomass gasification: a review with emphasis on the stoichiometric method. Renew. Sustain. Energy Rev. 74, 71–88 (2017)CrossRefGoogle Scholar
  26. 26.
    Melgar, A., Pérez, J., Horrillo, A.: Biomass gasification process in a downdraft fixed bed gasifier: a real time diagnosis model based on gas composition analysis. Rev. Fac. Ing. Univ. Antioquia. 49, 9–18 (2009)Google Scholar
  27. 27.
    Aydin, E.S., Yucel, O., Sadikoglu, H.: Chapter 2.6—numerical investigation of fixed-bed downdraft woody biomass gasification. In: Dincer, I., Colpan, C.O., Kizilkan, O. (eds.) Exergetic, Energetic and Environmental Dimensions, pp. 323–339. Academic Press, New York (2018)CrossRefGoogle Scholar
  28. 28.
    Zainal, Z.A., Ali, R., Lean, C.H., Seetharamu, K.N.: Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 42, 1499–1515 (2001)CrossRefGoogle Scholar
  29. 29.
    Melgar, A., Perez, J.F., Laget, H., Horillo, A.: Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 48, 59–67 (2007)CrossRefGoogle Scholar
  30. 30.
    Tinaut, F.V., Melgar, A., Perez, J.F., Horrillo, A.: Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Process. Technol. 89, 1076–1089 (2008)CrossRefGoogle Scholar
  31. 31.
    Jayathilake, R., Rudra, S.: Numerical and experimental investigation of equivalence ratio ({ER}) and feedstock particle size on birchwood gasification. Energies. 10, 1232 (2017)CrossRefGoogle Scholar
  32. 32.
    Zemann, C., Heinreichsberger, O., Gölles, M., Brunner, T., Dourdoumas, N., Obernberger, I.: Application of a model based control strategy at a fixed bed biomass district heating plant. In: Proceedings of 22nd European Biomass Conference Exhibition, pp. 1678–1705. (2014)Google Scholar
  33. 33.
    Mikulandrić, R., Lončar, D., Böhning, D., Böhme, R., Beckmann, M.: Process performance improvement in a co-current, fixed bed biomass gasification facility by control system modifications. Energy Convers. Manag. 104, 135–146 (2015)CrossRefGoogle Scholar
  34. 34.
    Gøbel, B., Henriksen, U., Jensen, T.K., Qvale, B., Houbak, N.: The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresour. Technol. 98, 2043–2052 (2007)CrossRefGoogle Scholar
  35. 35.
    Reed, T.B., Golden, A. Das: Handbook of Biomass Downdraft Gasifier Engine Systemss. (1988)Google Scholar
  36. 36.
    Basu, P.: Chapter 8—Design of Biomass Gasifiers. Academic Press, New York (2013)Google Scholar
  37. 37.
    Baratieri, M., Baggio, P., Fiori, L., Grigiante, M.: Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour. Technol. 99, 7063–7073 (2008)CrossRefGoogle Scholar
  38. 38.
    Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. (2009)Google Scholar
  39. 39.
    Smith, W.R., Missen, R.W.: Chemical reaction equilibrium analysis: theory and algorithm. Wiley, New York (1982)Google Scholar
  40. 40.
    McBride, J.B., Gordon, S., Reno, M.A.: Coefficients for calculating thermodynamic and transport properties of individual species. Nasa Technical Memorandum 4513 (1993)Google Scholar
  41. 41.
    Jangsawang, W., Laohalidanond, K., Kerdsuwan, S.: Optimum equivalence ratio of biomass gasification process based on thermodynamic equilibrium model. Elsevier, Amsterdam (2015)CrossRefGoogle Scholar
  42. 42.
    Caligiuri, C., Antolini, D., Patuzzi, F., Renzi, M., Baratieri, M.: Modelling of a small scale energy conversion system based on an open top gasifier coupled with a dual fuel diesel engine. In: European Biomass Conference and Exhibition Proceedings (2017)Google Scholar
  43. 43.
    Antolini, D., Shivananda, A.S., Patuzzi, F., Grigiante, M., Baratieri, M.: Experimental and modeling analysis of Air and CO2 biomass gasification in a reverse lab scale downdraft gasifier. Energy Proc. 158, 1182–1187 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.BIOENERGY 2020+ GmbHGrazAustria
  3. 3.Institute for Automation and ControlGraz University of TechnologyGrazAustria
  4. 4.URBAS Maschinenfabrik Ges.m.b.HVölkermarktAustria

Personalised recommendations