Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 12, pp 3723–3733 | Cite as

Oil and Aromatic Yield Maximization During Pyrolysis of Scrap Tire Rubber

  • Paola Gauthier-MaradeiEmail author
  • Claudia P. Tavera Ruiz
  • Mickael Capron
Original Paper
  • 61 Downloads

Abstract

Here, we report the optimization of scrap tire rubber (STR) pyrolysis in a fixed-bed reactor for the production of pyrolytic oil (py-oil). Special attention was focused on determining the effects of the temperature and gas residence time on the py-oil and aromatic yields, as well as the optimal range of operating conditions for their maximization. For that purpose, an experimental 4 × 3 factorial design was applied. The maximum py-oil yield obtained was 42.6 mass% at high temperatures and short gas residence times (560–600 °C and 10–18 s, respectively). In contrast, the maximum aromatic concentration (25.6 mass%) was obtained at moderate operating conditions (450–500 °C and 18–20 s). The analysis of variance revealed that the temperature is the most statistically significant variable in py-oil production while, for the nitrogen volumetric flow, only a combined effect with the temperature was observed. In contrast, in terms of the aromatic yield, both the temperature and gas volumetric flow were found to be statistically significant variables. The models provided determination coefficients (R2) close to 0.90, indicating good precision in the predictions.

Keywords

Factorial Experimental Design Intermediate pyrolysis Fixed-bed reactor 

Notes

Acknowledgements

The authors are grateful to the Vicerrectoría de Investigación y Extensión from Universidad Industrial de Santander (projects No. 1843 and 9370). Tavera Ruiz gratefully acknowledges Colciencias for the Ph.D. scholarship and Universidad Industrial de Santander for financial support through the doctoral program (project No. 1858). An especial thanks is given to the technical staff of the laboratories of the Chemical Engineering School of the Universidad Industrial de Santander for their technical support during the characterization analyses. The authors are also grateful to Yenny Sánchez and Diego Villamizar for their help to carry out the experimental tests.

References

  1. 1.
    Leung, D.Y.C., Yin, X.L., Zhao, Z.L., Xu, B.Y., Chen, Y.: Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Process. Technol. 79, 141–155 (2002)CrossRefGoogle Scholar
  2. 2.
    Puy, N., Martı, J.D., Navarro, V., Mastral, A.M.: Waste tyre pyrolysis–A review. Renew. Sustain. Energy Rev. 23, 179–213 (2013)CrossRefGoogle Scholar
  3. 3.
    Alkhatib, R., Loubar, K., Awad, S., Mounif, E.: Effect of heating power on the scrap tires pyrolysis derived oil. J. Anal. Appl. Pyrolysis 116, 10–17 (2015)CrossRefGoogle Scholar
  4. 4.
    Lah, B., Klinar, D., Likozar, B.: Pyrolysis of natural, butadiene, styrene – butadiene rubber and tyre components: modelling kinetics and transport phenomena at different heating rates and formulations. Chem. Eng. Sci. 87, 1–13 (2013)CrossRefGoogle Scholar
  5. 5.
    Edwin Raj, R., Robert Kennedy, Z., Pillai, B.C.: Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor. Energy Convers. Manage. 67, 145–151 (2013).  https://doi.org/10.1016/j.enconman.2012.11.012 CrossRefGoogle Scholar
  6. 6.
    Pinto, F., Paradela, F., Gulyurtlu, I., Maria, A.: Prediction of liquid yields from the pyrolysis of waste mixtures using response surface methodology. Fuel Process. Technol. 116, 271–283 (2013)CrossRefGoogle Scholar
  7. 7.
    Acosta, R., Tavera, C., Gauthier-Maradei, P., Nabarlatz, D.: Production of oil and char by intermediate pyrolysis of scrap tyres: influence on yield and product characteristics. Int. J. Chem. React. Eng. 13, 189–200 (2015).  https://doi.org/10.1515/ijcre-2014-0137 CrossRefGoogle Scholar
  8. 8.
    Mastral, A.M., Murillo, R., Callen, M.S., Garcia, T.: Optimisation of scrap automotive tyres recycling into valuable liquid fuels. Resour. Conserv. Recycl. 29, 263–272 (2000)CrossRefGoogle Scholar
  9. 9.
    Mkhize, N.M., Danon, B., van der Gryp, P., Gorgens, J.F.: Condensation of the hot volatiles from waste tyre pyrolysis by quenching. J. Anal. Appl. Pyrolysis 124, 180–185 (2017)CrossRefGoogle Scholar
  10. 10.
    Islam, M.R., Parveen, M., Haniu, H., Sarker, M.R.I.: Innovation in pyrolysis technology for management of scrap tire: a solution of energy and environment. Int. J. Environ. Sci. Dev. 1, 89–96 (2010)CrossRefGoogle Scholar
  11. 11.
    Fernández, A.M., Barriocanal, C., Alvarez, R.: Pyrolysis of a waste from the grinding of scrap tyres. J. Hazard. Mater. 204, 236–243 (2012).  https://doi.org/10.1016/j.jhazmat.2011.12.014 CrossRefGoogle Scholar
  12. 12.
    González, J.F., Encinar, J.M., Canito, J.L., Rodríguez, J.J.: Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis 58, 667–683 (2001).  https://doi.org/10.1016/S0165-2370(00)00201-1 CrossRefGoogle Scholar
  13. 13.
    Martínez, J.D., Puy, N., Murillo, R., García, T., Navarro, M.V., Mastral, A.M.: Waste tyre pyrolysis—A review. Renew. Sustain. Energy Rev. 23, 179–213 (2013).  https://doi.org/10.1016/j.rser.2013.02.038 CrossRefGoogle Scholar
  14. 14.
    Islam, M.R., Haniu, H., Beg, M.R.: Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: product yields, compositions and related properties. Fuel 87, 3112–3122 (2008).  https://doi.org/10.1016/j.fuel.2008.04.036 CrossRefGoogle Scholar
  15. 15.
    Nkosi, N., Muzenda, E.: A review and discussion of waste tyre pyrolysis and derived products. Proc. World Congr. En Eng. 2014, 417 (2014)Google Scholar
  16. 16.
    Kyari, M., Cunliffe, A., Williams, P.T.: Characterization of oils, gases, and char in relation to the pyrolysis of different brands of scrap automotive tires. Energy Fuels 19, 1165–1173 (2005).  https://doi.org/10.1021/ef049686x CrossRefGoogle Scholar
  17. 17.
    Mohammad, A., Inamuddin, D.: Chapter 5. Limonene as green solvent for extraction of natural products. In: Springer Science & Business Media (ed.) Green Solvents I: Properties and Applications in Chemistry, p. 176. Springer, Dordrecht (2012)Google Scholar
  18. 18.
    Kerton, F.M.: Chapter 5 Renewable solvents. In: Royal Society of Chemistry (ed.) Alternative solvents for green chemistry, pp. 97–166. Royal Society of Chemistry, London (2009)Google Scholar
  19. 19.
    Pakdel, H., Coulombet, S., Laval, U., Energetique, D.: Formation of dl-limonene in used tire vacuum pyrolysis oils. Environ. Sci. Technol. 25, 1646–1649 (1991)CrossRefGoogle Scholar
  20. 20.
    Cunliffe, A.M., Williams, P.T.: Composition of oils derived from the batch pyrolysis of tyres. J. Anal. Appl. Pyrolysis 44, 131–152 (1998).  https://doi.org/10.1016/S0165-2370(97)00085-5 CrossRefGoogle Scholar
  21. 21.
    Williams, P.T., Bottrill, P.: Sulfur-polycyclic tyre pyrolysis oil. Fuel 74, 736–742 (1995)CrossRefGoogle Scholar
  22. 22.
    Amari, T., Themelis, N.J., Wernick, I.K.: Resource recovery from used rubber tires. Resour. Policy 25, 179–188 (1999)CrossRefGoogle Scholar
  23. 23.
    Williams, P.T., Besler, S.: The Influence of temperature and heating rate on the slow pyrolysis of biomass. Fuel 1481, 6–7 (1996)Google Scholar
  24. 24.
    Williams, P.T., Brindle, A.J.: Aromatic chemicals from the catalytic pyrolysis of scrap tyres. J. Anal. Appl. Pyrolysis 67, 143–164 (2003).  https://doi.org/10.1016/S0165-2370(02)00059-1 CrossRefGoogle Scholar
  25. 25.
    Arabiourrutia, M., Lopez, G., Elordi, G., Olazar, M., Aguado, R., Bilbao, J.: Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chem. Eng. Sci. 62, 5271–5275 (2007).  https://doi.org/10.1016/j.ces.2006.12.026 CrossRefGoogle Scholar
  26. 26.
    Laresgoiti, M.F., Caballero, B.M., De Marco, I., Torres, A., Cabrero, M.A., Chomón, M.J.: Characterization of the liquid products obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 71, 917–934 (2004).  https://doi.org/10.1016/j.jaap.2003.12.003 CrossRefGoogle Scholar
  27. 27.
    Vecino, S., Gauthier-maradei, P., Gil, P.Á., Cárdenas, S.T.: Comparative study of bio-oil production from sugarcane bagasse and palm empty fruit bunch: yield optimization and bio-oil characterization. J. Anal. Appl. Pyrolysis 108, 284–294 (2014)CrossRefGoogle Scholar
  28. 28.
    Ucar, S., Karagoz, S., Ozkan, A.R., Yanik, J.: Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel 84, 1884–1892 (2005).  https://doi.org/10.1016/j.fuel.2005.04.002 CrossRefGoogle Scholar
  29. 29.
    Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manage. 33, 1714–1728 (2013).  https://doi.org/10.1016/j.wasman.2013.05.003 CrossRefGoogle Scholar
  30. 30.
    Katritzky, A.R., Ignatchenko, E.S., Barcock, R.A., Lobanov, V.S.: Prediction of gas chromatographic retention times and response factors using a general quantitative structure-property relationship treatment. Anal. Chem. 6, 1799–1807 (1994)CrossRefGoogle Scholar
  31. 31.
    Scanlon, J.T., Willis, D.E.: Calculation of flame ionization detector relative response factors using the effective carbon number concept. J. Chromatogr. Sci. 23, 333–340 (1985)CrossRefGoogle Scholar
  32. 32.
    Berrueco, C., Esperanza, E., Mastral, F.J., Ceamanos, J., García-Bacaicoa, P.: Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained. J. Anal. Appl. Pyrolysis 74, 245–253 (2005).  https://doi.org/10.1016/j.jaap.2004.10.007 CrossRefGoogle Scholar
  33. 33.
    Conesa, J.A., Martín-Gullón, I., Font, R., Jauhiainen, J.: Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environ. Sci. Technol. 38, 3189–3194 (2004).  https://doi.org/10.1021/es034608u CrossRefGoogle Scholar
  34. 34.
    Gauthier-Maradei, P., Cely Valderrama, Y., Nabarlatz, D.: Mathematical model of scrap tire rubber pyrolysis in a non-isothermal fixed bed reactor: definition of a chemical mechanism and determination of kinetic parameters. Waste Biomass Valoriz. 2, 256 (2017).  https://doi.org/10.1007/s12649-017-0079-7 CrossRefGoogle Scholar
  35. 35.
    Danon, B., Van Der Gryp, P., Schwarz, C.E., Görgens, J.F.: A review of dipentene (dl-limonene) production from waste tire pyrolysis. J. Anal. Appl. Pyrolysis 112, 1–13 (2015).  https://doi.org/10.1016/j.jaap.2014.12.025 CrossRefGoogle Scholar
  36. 36.
    Lopez, G., Olazar, M., Amutio, M., Aguado, R., Bilbao, J.: Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor in a conical spouted bed reactor. Energy Fuels (2009).  https://doi.org/10.1021/ef900582k CrossRefGoogle Scholar
  37. 37.
    Martín-Luengo, M.A., Yates, M., Martínez Domingo, M.J., Casal, B., Iglesias, M., Esteban, M., Ruiz-Hitzky, E.: Synthesis of p-cymene from limonene, a renewable feedstock. Appl. Catal. B Environ. 81, 218–224 (2008).  https://doi.org/10.1016/j.apcatb.2007.12.003 CrossRefGoogle Scholar
  38. 38.
    Quek, A., Balasubramanian, R.: Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. J. Anal. Appl. Pyrolysis 101, 1–16 (2013).  https://doi.org/10.1016/j.jaap.2013.02.016 CrossRefGoogle Scholar
  39. 39.
    Williams, P.T., Taylor, D.T.: Aromatization of tyre pyrolysis oil to yield polycyclic aromatic hydrocarbons. Fuel 72, 1469–1474 (1993).  https://doi.org/10.1016/0016-2361(93)90002-J CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.INTERFASE, Escuela de Ingeniería Química, Universidad Industrial de SantanderBucaramangaColombia
  2. 2.Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du SolideLilleFrance

Personalised recommendations