Solid-State Anaerobic Microbial Ensilage: A Combined Wet Storage and Pretreatment Method for the Bioconversion of Lignocellulosic Biomass

  • Xu YangEmail author
  • Zhiping Zhang
  • Lili Song
  • Guanglu Wang
  • Jingnan Zhang


Due to the contradiction between the discontinuity of agricultural production and continuity of industrial processing, the collection, storage and transformation of lignocellulosic biomass has become a basic problem in ensuring its sustainable development and large-scale utilization. Two broad methodologies for storage of LCB, dry and wet storage, are introduced. Process parameters including chemical reactions, microbial growth, temperature, and oxygen content, are analyzed in silage of different stages and with different microbial silage additives for the solid anaerobic treatment. Based on the results, we propose a quality evaluation system, encompassing sensory evaluation, organic acid content, soluble carbohydrate content, pH value and bacterial diversity, which can be used as criteria for judging the success of the microbial silage process. Finally, the research on solid-state anaerobic microbial silage pretreatment in biogas and ethanol conversion is summarized, and an optimized method for highly-efficient biochemical transformation of LCB is proposed based on the available findings.


Biogas Biomass Ensiling Ethanol Wet storage 



Lignocellulosic biomass


Anaerobic digestion


Water-soluble carbohydrates


Lactic acid bacteria


Dry matter


Scanning electron microscope


Dry corn stover


Biochemical methane potential


Total solids


Volatile solids


Colony forming units


Filter paper unit




Simultaneous saccharification and fermentation


Pig manure


Excess sludge


Hot-washing treatment



This work was funded by the Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry (No. 0123/13501050066).


  1. 1.
    Vasco-Correa, J., Khanal, S., Manandhar, A., Shah, A.: Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 247, 1015–1026 (2018)Google Scholar
  2. 2.
    REN21.: Renewables 2016 Global Status report. REN21 Secretariat, Paris (2016)Google Scholar
  3. 3.
    Buxton, D.R., O’Kiely, P.: Preharvest plant factors affecting ensiling. In: Buxton, D.R., Muck, R.E., Harrison, J.H. (eds.) Silage Science and Technology, pp. 199–250. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison (2003)Google Scholar
  4. 4.
    Rodriguez, C., Alaswad, A., Benyounis, K.Y., Olabi, A.G.: Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 68(2), 1193–1204 (2017)Google Scholar
  5. 5.
    Lan, T.Q., Gleisner, R., Zhu, J.Y., Dien, B.S., Hector, R.E.: High titer ethanol production from sporl-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Biores. Technol. 127(1), 291–297 (2013)Google Scholar
  6. 6.
    Chen, H., Li, G., Li, H.: Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. Bioresour. Technol. 153(1), 154–159 (2014)Google Scholar
  7. 7.
    Sun, S.L., Wen, J.L., Ma, M.G., Sun, R.C.: Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments. Appl. Energy 136(C), 519–526 (2014)Google Scholar
  8. 8.
    Paulova, L., Patakova, P., Branska, B., Rychtera, M., Melzoch, K.: Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol. Adv. 33(6), 1091–1107 (2015)Google Scholar
  9. 9.
    Seidl, P.R., Goulart, A.K.: Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr. Opin. Green Sustain. Chem. 2, 48–53 (2016)Google Scholar
  10. 10.
    Koyama, M., Watanabe, K., Kurosawa, N., Ishikawa, K., Ban, S., Toda, T.: Effect of alkaline pretreatment on mesophilic and thermophilic anaerobic digestion of a submerged macrophyte: inhibition and recovery against dissolved lignin during semi-continuous operation. Biores. Technol. 238, 666–674 (2017)Google Scholar
  11. 11.
    Almeida, J.R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., Gorwa-Grauslund, M.F.: Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82(4), 340–349 (2010)Google Scholar
  12. 12.
    Horn, S.J., Nguyen, Q.D., Westereng, B., Nilsen, P.J., Eijsink, V.G.H.: Screeningof steam explosion conditions for glucose production from non-impregnatedwheat straw. Biomass Bioenergy 35, 4879–4886 (2011)Google Scholar
  13. 13.
    Sipponen, M.H., Pihlajaniemi, V., Sipponen, S., Pastinen, O., Laakso, S.: Autohydrolysis and aqueous ammonia extraction of wheat straw: effect oftreatment severity on yield and structure of hemicellulose and lignin. RSC Adv. 4, 23177–23184 (2014)Google Scholar
  14. 14.
    Niemi, P., Pihlajaniemi, V., Rinne, M., Siika-Aho, M.: Production of sugars from grass silage after steam explosion or soaking in aqueous ammonia. Ind. Crops Prod. 98, 93–99 (2017)Google Scholar
  15. 15.
    Davis, R., Tao, L., Tan, E.C. D., Biddy, M.J., Beckham, G.T., Scarlata, C., et al.: Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons (2015)Google Scholar
  16. 16.
    Feldman, D., Kowbel, D.J., Glass, N.L., Yarden, O., Hadar, Y.: Detoxification of 5-hydroxymethylfurfural by the pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnol. Biofuels 8(1), 63–73 (2003)Google Scholar
  17. 17.
    Sipos, B., Kreuger, E., Svensson, S.E., Réczey, K., Björnsson, L., Zacchi, G.: Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 34(12), 1721–1731 (2010)Google Scholar
  18. 18.
    Yang, X., Li, H., Chang, C., Chen, J., Ma, X.: The integrated process of microbial ensiling and hot-washing pretreatment of dry corn stover for ethanol production. Waste Biomass Valoriz. 9(11), 2031–2040 (2017)Google Scholar
  19. 19.
    Michel, P.H.F., Gonçalves, L.C., Rodrigues, J.A.S., Keller, K.M., Raposo, V.S., Lima, E.M., et al.: Re-ensiling and inoculant application with lactobacillus plantarum and propionibacterium acidipropionici on sorghum silages. Grass Forage Sci. 72, 432–440 (2016)Google Scholar
  20. 20.
    Chen, L., Yuan, X.J., Jun-Feng, L., Wang, S.R., Dong, Z.H., Shao, T.: Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitrogas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J. Integr. Agric. 16(7), 1592–1600 (2017)Google Scholar
  21. 21.
    Kung Jr., L., Shaver, R.D., Grant, R.J., Schmidt, R.J.: Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101(5), 4020–4033 (2018)Google Scholar
  22. 22.
    Tanjore, D.: Biological pretreatments of corn stover biomass through aerobic and anaerobic solid substrate fermentation (2009)Google Scholar
  23. 23.
    Liu, S., Xu, F., Ge, X., Li, Y.: Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production. Bioresour. Technol. 209, 246–253 (2016)Google Scholar
  24. 24.
    Kholif, A.E., Elghandour, M.M.Y., Rodríguez, G.B., Olafadehan, O.A., Salem, A.Z.M.: Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktail as a cleaner and sustainable biological product. J. Clean. Prod. 142(1), 2649–2655 (2017)Google Scholar
  25. 25.
    Shinners, K.J., Binversie, B.N., Muck, R.E., Weimer, P.J.: Comparison of wet and dry corn stover harvest and storage. Biomass Bioenergy 31(4), 211–221 (2007)Google Scholar
  26. 26.
    Sultana, A., Kumar, A.: Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour. Technol. 102(21), 9947–9956 (2011)Google Scholar
  27. 27.
    Richard, T.L.: Challenges in scaling up biofuels infrastructure. Science 329(5993), 793–796 (2010)Google Scholar
  28. 28.
    Zheng, Y., Yu, C., Cheng, Y.S., Zhang, R., Jenkins, B., Vandergheynst, J.S.: Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresour. Technol. 102(2), 1489–1495 (2011)Google Scholar
  29. 29.
    Johansson, J., Liss, J.E., Gullberg, T., Björheden, R., Richardson, J.: Transport and handling of forest energy bundles—Advantages and problems. Biomass Bioenergy 30(4), 334–341 (2006)Google Scholar
  30. 30.
    Rentizelas, A.A., Tolis, A.J., Tatsiopoulos, I.P.: Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 13(4), 887–894 (2009)Google Scholar
  31. 31.
    Wan, C., Li, Y.: Microbial deligniflcation of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb. Technol. 47(1), 31–36 (2010)Google Scholar
  32. 32.
    Wan, C., Li, Y.: Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101(16), 6398–6403 (2010)Google Scholar
  33. 33.
    Wan, C., Li, Y.: Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 30(6), 1447–1457 (2012)Google Scholar
  34. 34.
    Zheng, Y., Zhao, J., Xu, F., Li, Y.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. 42(1), 35–53 (2014)Google Scholar
  35. 35.
    Xu, C., Ma, F., Zhang, X., Chen, S.: Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J. Agric. Food Chem. 58, 10893–10901 (2010)Google Scholar
  36. 36.
    Dias, A.A., Freitas, G.S., Marques, G.S.M., Sampaio, A., Fraga, I., Rodrigues, M.A.M., Evtuguin, D.V., Bezerra, R.M.F.: Enzymatic saccharification of biologically pre-treated wheat stover with white-rot fungi. Bioresour. Technol. 101, 6045–6050 (2010)Google Scholar
  37. 37.
    Bak, J.S., Ko, J.K., Choi, I.G., Park, Y.C., Seo, J.H., Kim, K.H.: Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice stover. Biotechnol. Bioeng. 104, 471–482 (2009)Google Scholar
  38. 38.
    Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N.: Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33, 88–96 (2009)Google Scholar
  39. 39.
    Yu, H., Guo, G., Zhang, X., Yan, K., Xu, C.: The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol. 100, 5170–5175 (2009)Google Scholar
  40. 40.
    Nigam, P., Pandey, A.: Solid-state fermentation technology for bioconversion of biomass and agricultural residues [M]. In: Nigam, P., Pandey, A. (eds.) Biotechnology for Agro-Industrial Residues Utilisation, pp. 197–221. Springer, Netherlands (2009)Google Scholar
  41. 41.
    Shinners, K.J., Muck, R.E., Weimer, P.J.: Aerobic and anaerobic storage of single-pass, chopped corn stover. Bioenergy Res. 4(1), 61–75 (2011)Google Scholar
  42. 42.
    Gao, Z., Mori, T., Kondo, R.: The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis. Biotechnol. Biofuels 5(1), 28–39 (2012)Google Scholar
  43. 43.
    Herrmann, C., Heiermann, M., Idler, C.: Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour. Technol. 102(8), 5153–5161 (2011)Google Scholar
  44. 44.
    Slottner, D., Bertilsson, J.: Effect of ensiling technology on protein degradation during ensilage. Anim. Feed Sci. Technol. 127(1), 101–111 (2006)Google Scholar
  45. 45.
    Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85(4), 849–860 (2010)Google Scholar
  46. 46.
    Cui, Z., Jian, S., Wan, C., Li, Y.: Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresour. Technol. 109(4), 98–104 (2012)Google Scholar
  47. 47.
    Oleskowicz-Popiel, P., Thomsen, A.B., Schmidt, J.E.: Ensiling—Wet-storage method for lignocellulosic biomass for bioethanol production. Biomass Bioenergy 35(5), 2087–2092 (2011)Google Scholar
  48. 48.
    Pakarinen, A., Maijala, P., Jaakkola, S., Stoddard, F.L., Kymalainen, M., Viikari, L.: Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol. Biofuels 4, 20–32 (2011)Google Scholar
  49. 49.
    Bailey, L.H.: Cyclopedia of American Agriculture: Vol. II—Crops, 3rd edn. Macmillan, New York (1911)Google Scholar
  50. 50.
    Darku, I.D.: Characterization of wet storage impacts on bioprocessing of corn stover to biofuels. Agric. Biol. Eng. (2013)Google Scholar
  51. 51.
    Schroeder, J.W.: Quality forage: haylage and other fermented forages. Extension Publications (2004)Google Scholar
  52. 52.
    Watson, S.J., Ferguson, W.S.: The losses of dry matter and digestible nutrients in low-temperature silage, with and without added molasses or mineral acids. J. Agric. Sci. 27(1), 67–107 (1937)Google Scholar
  53. 53.
    Jones, C.M., Ishier, A.J., Heinriehs, G.W., Roth, V.A.: From Harvest to Feed: Understanding Silage Management. University Park, College of Agricultural Science Agricultural Research and Cooperative Extension (2004)Google Scholar
  54. 54.
    Saini, P.: Effect of harvest timing on the quality of switchgrass for biofuel: changes in lignocellulose, carbon and potential energy production. Dissertations & Theses—Gradworks (2015)Google Scholar
  55. 55.
    Fenlon, D.R., Henderson, A.R., Rooke, J.A.: The fermentative preservation of grassed and forage crops. J. Appl. Bacteriol. 79, 118–131 (1995)Google Scholar
  56. 56.
    Elferink, S.J.W.H.O, Driehuis, F, Gottschal, J.C, Spoelstra, S.F, Mannetje, L.: Silage fermentation processes and their manipulation. Fao Plant Production & Protection Paper (2000)Google Scholar
  57. 57.
    Amanullah, S.M., Kim, D.H., Lee, H.J., Joo, Y.H., Kim, S.B., Kim, S.C.: Effects of microbial additives on chemical composition and fermentation characteristics of barley silage. Asian-Australasian journal of animal sciences 27(4), 511–517 (2014)Google Scholar
  58. 58.
    Neureiter, M., Pereira, J.T., Lopez, C.P., Pichler, H., Kirchmayr, R.: Effect of silage preparation on methane yields from whole crop maize silages. In: Hartmann, H., Ahring, B. (eds.), 4th International Symposium on Anaerobic Digestion of Solid Waste, Copenhagen (2006)Google Scholar
  59. 59.
    Vervaeren, H., Hostyn, K., Ghekiere, G., Willems, B.: Biological ensilage additives as pretreatment for maize to increase the biogas production. Renew. Energy 35(9), 2089–2093 (2010)Google Scholar
  60. 60.
    Wang, R.R., Wang, H.L., Liu, X., Xu, C.C.: Effects of different additives on fermentation characteristics and protein degradation of green tea grounds silage. Asian. Aust. J. Anim. 24(5), 616–622 (2011)Google Scholar
  61. 61.
    Ambye-Jensen, M., Thomsen, S.T., Kadar, Z., Meyer, A.S.: Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment. Biotechnol. Biofuels 6(1), 116–124 (2013)Google Scholar
  62. 62.
    Contreras-Govea, F.E., Muck, R.E., Broderick, G.A., Weimer, P.J.: Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed Sci. Technol. 179(1–4), 61–68 (2013)Google Scholar
  63. 63.
    Ambye-Jensen, M., Johansen, K.S., Didion, T., Kádár, Z., Meyer, A.S.: Ensiling and hydrothermal pretreatment of grass: consequences for enzymatic biomass conversion and total monosaccharide yields. Biotechnol. Biofuels 7(1), 1–12 (2014)Google Scholar
  64. 64.
    Yuan, X.J., Guo, G., Wen, A.Y., Desta, S.T., Wang, J., Wang, Y., Shao, T.: The effect of different additives on the fermentation quality, in vitro, digestibility and aerobic stability of a total mixed ration silage. Anim. Feed Sci. Technol. 207, 41–50 (2015)Google Scholar
  65. 65.
    Desta, S.T., Yuan, X.J., Li, J., Tao, S.: Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of napier grass ensiled with additives. Bioresour. Technol. 221, 447–454 (2016)Google Scholar
  66. 66.
    Rabelo, C.H.S., Basso, F.C., Lara, E.C., Jorge, L.G.O., Härter, C.J., Mari, L.J., Reis, R.A.: Effects of Lactobacillus buchneri as a silage inoculant or probiotic on in vitro organic matter digestibility, gas production and volatile fatty acids of low dry-matter whole-crop maize silage. Grass Forage Sci. 72, 1–11 (2017)Google Scholar
  67. 67.
    Carvalho, B.F., Avila, C.L.S., Pereira, M.N., Schwan, R.F.: Methylotrophic yeast, lactic acid bacteria and glycerine as additives for sugarcane silage. Grass Forage Sci. 72(2), 355–368 (2017)Google Scholar
  68. 68.
    Jin, L., Dunière, L., Lynch, J.P., Zaheer, R., Turkington, K., Blackshaw, R.E., Lupwayi, N.Z., O’Donovan, J.T., Harker, K.N., McAllister, T., Baah, J., Wang, Y.: Impact of ferulic acid esterase-producing lactobacilli and fibrolytic enzymes on ensiling and digestion kinetics of mixed small-grain silage. Grass Forage Sci. 72(1), 80–92 (2016)Google Scholar
  69. 69.
    Li, L., Yuan, Z., Sun, Y., Kong, X., Dong, P., Zhang, J.: A reused method for molasses-processed wastewater: effect on silage quality and anaerobic digestion performance of pennisetum purpereum. Bioresour. Technol. 241, 1003–1011 (2017)Google Scholar
  70. 70.
    Wen, A.Y., Yuan, X.J., Wang, J., Desta, S.T., Shao, T.: Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 223, 141–148 (2017)Google Scholar
  71. 71.
    Xu, Z., He, H., Zhang, S., Kong, J.: Effects of inoculants lactobacillus brevis and lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 7(1), 1–9 (2017)Google Scholar
  72. 72.
    Zhang, M., Lv, H., Tan, Z., Li, Y., Wang, Y., Pang, H., Li, Z., Jiao, Z., Jin, Q.: Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria. Anim. Sci. J. 88(2), 277–285 (2017)Google Scholar
  73. 73.
    Zhao, X., Liu, J., Liu, J., Yang, F., Zhu, W., Yuan, X., Hu, Y.G., Cui, Z.J., Wang, X.F.: Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 241, 349–359 (2017)Google Scholar
  74. 74.
    Davies, D.R., Merry, R.J., Williams, A.P., Bakewell, E.L., Leemans, D.K., Tweed, J.K.S.: Proteolysis during ensilage of forages varying in soluble sugar content. J. Dairy Sci. 81, 444–453 (1998)Google Scholar
  75. 75.
    Kalač, P.: The required characteristics of ensiled crops used as a feedstock for biogas production: a review. J. Agrobiol. 28(2), 85–96 (2011)Google Scholar
  76. 76.
    Holzer, M., Mayrhuber, E., Danner, H., Braun, R.: The role of lactobacillus buchneri in forage preservation. Trends Biotechnol. 21(6), 282–287 (2003)Google Scholar
  77. 77.
    Oliveira, A.S., Weinberg, Z.G., Ogunade, I.M., Cervantes, A.A.P., Arriola, K.G., Jiang, Y.: Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 100(6), 4587–4603 (2017)Google Scholar
  78. 78.
    Li, L., Sun, Y., Yuan, Z., Kong, X., Wao, Y., Yang, L., et al.: Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of manyflower silvergrass. Bioresour. Technol. 189, 334–340 (2015)Google Scholar
  79. 79.
    Elferink, O.S.J., Krooneman, J., Gottschal, J.C., Spoelstra, S.F., Faber, F., Driehuis, F.: Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67, 125–132 (2011)Google Scholar
  80. 80.
    Kraut-Cohen, J., Tripathi, V., Chen, Y., Gatica, J., Volchinski, V., Sela, S., et al.: Temporal and spatial assessment of microbial communities in commercial silages from bunker silos. Appl. Microbiol. Biotechnol. 100(15), 6827–6835 (2016)Google Scholar
  81. 81.
    Ni, K., Minh, T., Tsuruta, T., Pang, H., Nishino, N.: Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and nextgeneration sequencing. Appl. Microbiol. Biotechnol. 101, 1385–1394 (2017)Google Scholar
  82. 82.
    Cai, Y., Benno, Y., Ogawa, M., Ohmomo, S., Kumai, S., Nakase, K.: Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. From forage crops on silage fermentation. Appl. Environ. Microbiol. 64, 2982–2987 (1998)Google Scholar
  83. 83.
    Virtanen, A.I.: The AIV method of preserving fresh fodder. Emp. J. Exp. Agric. 1, 143–155 (1933)Google Scholar
  84. 84.
    Daems, F., Decruyenaere, V., Agneessens, R., Lognay, G., Romnee, J.M., Froidmont, E.: Changes in the isoflavone concentration in red clover (Trifolium pratense L.) during ensiling and storage in laboratory-scale silos. Anim. Feed Sci. Technol. 217, 36–44 (2016)Google Scholar
  85. 85.
    Cohen-Zinder, M., Orlov, A., Trofimyuk, O., Agmon, R., et al.: Dietary supplementation of Moringa oleifera silage increases meat tenderness of assaf lambs. Small Rumin. Res. 151, 110–116 (2017)Google Scholar
  86. 86.
    Wu, W., Ju, M., Liu, J., Liu, B.: Effect of ensilage on bioconversion of switchgrass to ethanol based on liquid hot water pretreatment. Chin. J. Biotechnol. 32(4), 457–467 (2016)Google Scholar
  87. 87.
    Danner, H., Holzer, M., Mayrhuber, E., Braun, R.: Acetic acid increases stability of silage under aerobic conditions. Appl. Environ. Microbiol. 69(1), 562–567 (2003)Google Scholar
  88. 88.
    Megías, M.D., Hernández, F., Cano, J.A., Martinez-Teruel, A., Gallego, J.A.: Effects of different additives on the cell wall and mineral fractions of artichoke (cynarascolymusl) and orange (citrus aurantiuml) by-product silage. J. Sci. Food Agric. 76(2), 173–178 (1998)Google Scholar
  89. 89.
    Zhao, Y., Yu, J., Liu, J., Yang, H.Y., Gao, L., Yuan, X.F., Cui, Z.J., Wang, X.F.: Material and microbial changes during corn stalk silage and their effects on methane fermentation. Bioresour. Technol. 222, 89–99 (2016)Google Scholar
  90. 90.
    Zhao, Y., Yuan, X., Wen, B., Wang, X., Zhu, W., Cui, Z.: Methane potential and microbial community dynamics in anaerobic digestion of silage and dry cornstalks: a substrate exchange study. Appl. Biochem. Biotechnol. 181(1), 1–21 (2017)Google Scholar
  91. 91.
    Martin, P.C.B., Schlienz, M., Greger, M.: Production of bio-hydrogen and methane during semi-continuous digestion of maize silage in a two-stage system. Int. J. Hydrogen. Energy 42(9), 5768–5779 (2017)Google Scholar
  92. 92.
    Zhang, H., Wu, J., Gao, L., Yu, J., Yuan, X., Zhu, W., Wang, X.F., Cui, Z.J.: Aerobic deterioration of corn stalk silage and its effect on methane production and microbial community dynamics in anaerobic digestion. Bioresour. Technol. 250, 828–837 (2017)Google Scholar
  93. 93.
    Menind, A., Annuk, A., Romagnoli, F.: Advantages of separated silage for bioenergy applications without material washing. Energy Procedia 113, 63–68 (2017)Google Scholar
  94. 94.
    Xu, Y., Chun, C., Hong-Liang, L.I., et al.: Mixed ensiling pretreatment and semi-continuous fermentation of dry corn stover and wastes for biogas production. J. Chem. Eng. Chin. Univ. 31(4), 899–905 (2017)Google Scholar
  95. 95.
    Ge, X., Xu, F., Vasco-Correa, J.: Giant reed: a competitive energy crop in comparison with miscanthus. Renew. Sustain. Energy Rev. 54, 350–362 (2015)Google Scholar
  96. 96.
    Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F.: The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag. 32(9), 1634–1650 (2012)Google Scholar
  97. 97.
    Wang, Q.H., Masaaki, K., Hiroaki, I.O., Yasuhiko, K.: Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass Bioenergy 16(6), 407–416 (1999)Google Scholar
  98. 98.
    Franco, R.T., Buffière, P., Bayard, R.: Ensiling for biogas production: Critical parameters. A review. Biomass Bioenergy 94, 94–104 (2016)Google Scholar
  99. 99.
    Annukka, P., Pekka, M., Seija, J., Stoddard, F.L., Maritta, K., Liisa, V.: Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol. Biofuels 4(1), 20–32 (2011)Google Scholar
  100. 100.
    Paudel, S.R., Banjara, S.P., Choi, O.K., Park, K.Y., Kim, Y.M., Lee, J.W.: Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour. Technol. 245(Part A), 1194–1205 (2017)Google Scholar
  101. 101.
    Tsapekos, P., Kougias, P.G., Frisona, A., Ragab, R., Angelidakia, I.: Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 216, 545–552 (2016)Google Scholar
  102. 102.
    Zhou, S., Runge, T.M.: Mechanism of improved cellulosic bio-ethanol production from alfalfa stems via ambient-temperature acid pretreatment. Biores. Technol. 193, 288–296 (2015)Google Scholar
  103. 103.
    Graves, T., Narendranath, N.V., Dawson, K., Power, R.: Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 33(6), 469–474 (2006)Google Scholar
  104. 104.
    Chen, Y., Sharma-Shivappa, R.R., Chen, C.: Ensiling agricultural residues for bioethanol production. Appl. Biochem. Biotechnol. Part A 143(1), 80–92 (2007)Google Scholar
  105. 105.
    Sun, S.N., Cao, X.F., Sun, S.L., Xu, F., Song, X.L., Sun, R.C., Jones, G.L.: Improving the enzymatic hydrolysis of thermo-mechanical fiber from eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation. Biotechnol. Biofuels 7(1), 116–127 (2014)Google Scholar
  106. 106.
    Larsen, S.U., Hjortgregersen, K., Vazifehkhoran, A.H., Triolo, J.M.: Co-ensiling of straw with sugar beet leaves increases the methane yield from straw. Bioresour. Technol. 245(Pt A), 106–115 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Henan Key Laboratory of Cold Chain Food Quality and Safety ControlZhengzhouChina
  2. 2.Collaborative Innovation Center for Food Production and SafetyZhengzhouChina
  3. 3.School of Food and BioengineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations