Advertisement

Improved Production of Multi-component Cellulolytic Enzymes Using Sweet Sorghum Bagasse and Thermophilic Aspergillus terreus RWY Through Statistical Process Optimization

  • Reetika Sharma
  • Gurvinder Singh Kocher
  • Sarvanan Satyanarayana Rao
  • Harinder Singh OberoiEmail author
Original Paper
  • 48 Downloads

Abstract

Purpose

The study was conducted to improve the productivity of the multi-component cellulolytic enzymes using thermophilic Aspergilus terreus strain and sweet sorghum bagasse as substrate. One of the major objectives was to study the interactions between different operating parameters and appraise the potential of the optimized process for validation studies.

Methods

Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the process parameters for cellulase production by thermophilic Aspergillus terreus via a solid-state fermentation (SSF) process. A set of 50 experiments in triplicate with five factors (moisture content, inoculum level, pH, temperature and incubation period), three levels with six axial points (α ± 1.68) and five replications at the central point were conducted in this study with filter paper (FP) cellulase and β-glucosidase as output parameters.

Results

Micrographs and scanning electron microscopy (SEM) of A. terreus RWY revealed a chain of conidia in a columnar arrangement with an average size of conidium being 2.12 µ. Statistical process optimization suggested temperature of 45 °C, pH of 5.8, incubation time of 72 h, inoculum concentration of 10% and initial moisture content of 80% (w/w) as optimum for conducting validation studies. Validation studies showed comparable FP and β-glucosidase activities as predicted by the model equations. In addition to FP and β-glucosidase, A. terreus RWY also produced endoglucanase (EG), β-xylosidase, α-l-arabinofuranosidase, CBHI, xylanase and xylan esterase of 149.54, 26.94, 183.16, 17.52, 1264.47 and 1106.46 U/gds, respectively during the validation process. Response surface optimization also led to a nearly two-fold increase in FP and β-glucosidase activities.

Conclusion

Coupled with the use of thermophilic strains which confer specific benefits during industrial applications, statistical process optimization holds potential for scale-up studies for cellulase production using the optimized parameters, SSB as substrate and thermophilic A. terreus RWY.

Keywords

Aspergillus terreus β-Glucosidase Filter paper cellulase Response surface methodology Solid state fermentation Sweet sorghum bagasse 

Notes

Funding

Authors thankfully acknowledge the financial support received under the project (BT/PR8488/PBD/26/68/2006) funded by the Department of Biotechnology (DBT), Government of India for conducting this study. Authors Sharma and Kocher also thankfully acknowledge the support received from the Punjab Agricultural University, Ludhiana, India.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Research Involving Human Participants and/or Animals

This study did not involve the use of human participants and/or animals.

Supplementary material

12649_2019_670_MOESM1_ESM.docx (610 kb)
Supplementary material 1 (DOCX 610 kb)

References

  1. 1.
    Kafy, A., Kim, H.C., Zhai, L., Kim, J.W., Hai, L.V., Kang, T.J., Kim, J.: Cellulose long fibres fabricated from cellulose nanofibers and its strong and tough characteristics. Sci. Rep. 7(1), 17683 (2017)CrossRefGoogle Scholar
  2. 2.
    Juturu, V., Wu, J.C.: Microbial cellulases: engineering, production and applications. Renew. Sust. Energy Rev. 33, 188–203 (2014)CrossRefGoogle Scholar
  3. 3.
    Walia, A., Guleria, S., Mehta, P., Chauhan, A., Prakash, J.: Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7(1), 11 (2017).  https://doi.org/10.1007/s13205-016-0584-6 CrossRefGoogle Scholar
  4. 4.
    Gupta, R., Mehta, G., Deswal, D., Sharma, S., Jain, K.K., Kuhad, R.C., Singh, A.: Cellulases and their biotechnological applications. Chapter in Biotechnology for Environmental Management and Resource Recovery, pp. 89–106. Springer, New Delhi (2013)Google Scholar
  5. 5.
    Menendez, E., Garcia-Fraile, P., Rivas, R.: Review biotechnological applications of bacterial cellulases. AIMS Bioeng. 2(3), 163–182 (2015).  https://doi.org/10.3934/bioeng.2015.3.163 CrossRefGoogle Scholar
  6. 6.
    Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B.A., Blanch, H.W.: The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. (2012).  https://doi.org/10.1002/bit.24370 Google Scholar
  7. 7.
    Oberoi, H.S., Rawat, R., Chadha, B.S.: Response surface optimization for enhanced production of cellulases with improved functional characteristics by newly isolated Aspergillus niger HN-2. Antonie van Leeuwen. 105, 119–134 (2014).  https://doi.org/10.1007/s10482-013-0060-9 CrossRefGoogle Scholar
  8. 8.
    Baig, M.M.V., Baig, M.L.B., Baig, M.I.A., Yasmeen, M.: Saccharification of banana agro-waste by cellulolytic enzymes. Afr. J. Biotechnol. 3, 447–450 (2004)CrossRefGoogle Scholar
  9. 9.
    Milala, M.A., Shugaba, A., Gidado, A., Ene, A.C., Wafer, J.A.: Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res. J. Agric. Biol. Sci. 1, 325–328 (2005)Google Scholar
  10. 10.
    Oberoi, H.S., Chavan, Y., Bansal, S., Dhillon, G.S.: Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioproc. Technol. 3, 528–536 (2010)CrossRefGoogle Scholar
  11. 11.
    Ratnavathi, C.V., Chakravarthy, K., Komala, V.V., Chavan, U.D., Patil, J.V.: Sweet sorghum as feedstock for biofuel production: a review. Sugar Tech. 13, 399–407 (2011)CrossRefGoogle Scholar
  12. 12.
    Sajith, S., Sreedevi, S., Priji, P., Unni, K.N., Benjamin, S.: Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann. Microbiol. 64, 763–771 (2014)CrossRefGoogle Scholar
  13. 13.
    Shen, X.L., Xia, L.M.: Production and immobilization of cellobiase from Aspergillusniger ZU-07. Proc. Biochem. 39, 1363–1367 (2004)CrossRefGoogle Scholar
  14. 14.
    Rawat, R., Srivastava, N., Chadha, B.S., Oberoi, H.S.: Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energy Fuels 28, 5067–5075 (2014).  https://doi.org/10.1021/ef500891g CrossRefGoogle Scholar
  15. 15.
    Viikari, L., Alapuranen, M., Puranen, T., Vehmaanper, J., Siikaaho, M.: Thermostable enzymes in lignocellulose hydrolysis. Adv. Biochem. Eng. Biotechnol. 108, 121–145 (2007)Google Scholar
  16. 16.
    Szijarto, N., Siika-Aho, M., Tenkanen, M., Alapuranen, M., Vehmaanpera, J., Reczey, K., Viikari, L.: Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpusalbomyces. J. Biotechnol. 136, 140–147 (2008)CrossRefGoogle Scholar
  17. 17.
    Du, R., Wang, Yu., Zhao, F., Qiao, X., Song, Q., Li, S., Kim, R.-C., Ye, H., Xiao, H., Zhou, Z.: Production, optimization and partial characterization of bacterial cellulose from Gluconacetobacterxylinus TJU-D2. Waste Biomass Valor. (2018).  https://doi.org/10.1007/s12649-018-0440-5 Google Scholar
  18. 18.
    Jaramillo, L., Santos, D., Borges, E., Dias, D., Periera, N.: Low-cost effective culture medium optimization for d-lactic acid production by Lactobacillus coryniformis subsp. torquens under oxygen-deprived condition. Ann. Microbiol. 68(9), 547–555 (2018).  https://doi.org/10.1007/s13213-018-1362-y CrossRefGoogle Scholar
  19. 19.
    Mubarak, M., Shailja, A., Suchithra, T.V.: Cost effective approach for production of Chlorella pyrenoidosa: a RSM based study. Waste Biomass Valor. (2018).  https://doi.org/10.1007/s12649-018-0330-x Google Scholar
  20. 20.
    Pereira, J.C., Marques, N.P., Rodrigues, A., de Oliveira, T.B., Boscolo, M., da Silva, R., Gomes, E., Bocchini, D.A.: Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J. Appl. Microbiol. 118, 928–939 (2015)CrossRefGoogle Scholar
  21. 21.
    Maheshwari, R., Bharadwaj, G., Bhat, M.K.: Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64, 461–488 (2000)CrossRefGoogle Scholar
  22. 22.
    Rawat, R., Kumar, S., Chadha, B.S., Kumar, D., Oberoi, H.S.: An acidothermophilic functionally active novel GH12 family endoglucanase from Aspergillus niger HO: purification, characterization and molecular interaction studies. Antonie Van Leeuwenhoek 107, 103–117 (2015).  https://doi.org/10.1007/s10482-014-0308-z CrossRefGoogle Scholar
  23. 23.
    Bizukojc, M., Ledakowicz, S.: The morphological and physiological evolution of Aspergillus terreus mycelium in the submerged culture and its relation to the formation of secondary metabolites. World J. Microbiol. Biotechnol. 26, 41–54 (2010).  https://doi.org/10.1007/s11274-009-0140-1 CrossRefGoogle Scholar
  24. 24.
    Kumar, A.K., Parikh, B.S.: Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild-alkali and dilute-acid pretreated lignocellulosic biomass residues. Bioresour. Bioproc. 2, 7 (2015).  https://doi.org/10.1186/s40643-015-0038-8 CrossRefGoogle Scholar
  25. 25.
    Sharma, R., Kocher, G.S., Bhogal, R.S., Oberoi, H.S.: Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. J. Basic Microbiol. 54, 1–11 (2014)CrossRefGoogle Scholar
  26. 26.
    Kasana, R.C., Salwan, R., Dhar, H., Dutt, S.: Arapid and easy method for the detection of microbialcellulases on agar plates using Gram’s Iodine. Curr. Microbiol. 57, 503–507 (2008)CrossRefGoogle Scholar
  27. 27.
    Alves, M.S., Pozza, E.A.: Scanning electron microscopy detection of seed-borne fungi in blotter test. Curr. Adv. Sci. Technol. 24, 231–238 (2012)Google Scholar
  28. 28.
    Moretti, M.M.S., Bocchini-Martins, D.A., da-Silva, R., Rodrigues, A., Sette, L.D., Gomes, E.: Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid state fermentation. Braz. J. Microbiol. 24, 1062–1071 (2012)CrossRefGoogle Scholar
  29. 29.
    Rai, P., Tiwari, S., Gaur, R.: Optimization of process parameters for cellulase production by novel thermotolerant yeast. Bioresour. 7, 5401–5414 (2012)CrossRefGoogle Scholar
  30. 30.
    Brijwani, K., Oberoi, H.S., Vadlani, P.V.: Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Proc. Biochem. 45, 120–128 (2010)CrossRefGoogle Scholar
  31. 31.
    Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crops Prod. 34, 1160–1167 (2011)CrossRefGoogle Scholar
  32. 32.
    Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)CrossRefGoogle Scholar
  33. 33.
    Ghose, T.K., Bisaria, V.S.: Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem. 59, 1739–1752 (1987)CrossRefGoogle Scholar
  34. 34.
    Bailey, M.J., Tahtiharju, J.: Efficient cellulose production by Trichodermareesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl. Microbiol. Biotechnol. 62, 156–162 (2003)CrossRefGoogle Scholar
  35. 35.
    Poutanen, K., Ratto, M., Puls, J., Viikari, L.: Evaluation of different microbial xylanolytic systems. J. Biotechnol. 6, 49–60 (1987)CrossRefGoogle Scholar
  36. 36.
    Bradford, M.M.: A rapid and sensitive method for thequantification of microgram quantities of protein utilizingthe principle of protein dye binding. Anal. Biochem. 72, 248–254 (1976)CrossRefGoogle Scholar
  37. 37.
    Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., Yu, X.: Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99, 7623–7629 (2008)CrossRefGoogle Scholar
  38. 38.
    Khot, M., Kamat, S., Zinjarde, S., Pant, A., Chopade, B., Kumar, R.A.: Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb. Cell Fact. 11, 71 (2012)CrossRefGoogle Scholar
  39. 39.
    Aiba, S., Humphrey, A.E., Millis, N.F.: Kinetics. Biochemical engineering, 2nd edn, pp. 92–127. Academic Press, New York (1973)Google Scholar
  40. 40.
    Issac, G.S., Abu-Tahon, M.A.: Enhanced alkaline cellulase production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Braz. J. Microbiol. 46, 1269–1277 (2015)CrossRefGoogle Scholar
  41. 41.
    Vu, V.H., Pham, T.A., Kim, K.: Improvement of fungal cellulases production by mutation and optimization of solid state fermentation. Mycobiol. 39, 20–25 (2011)CrossRefGoogle Scholar
  42. 42.
    Mekala, N.K., Singhania, R.R., Sukumaran, R.K., Pandey, A.: Cellulase production under solid state fermentation by Trichodermareesei RUT-30: statistical optimization of process parameters. Appl. Biochem. Biotechnol. 151, 122–131 (2008)CrossRefGoogle Scholar
  43. 43.
    Ilyas, U., Ahmed, S., Majeed, A., Nadeem, M.: Biohydrolysis of Saccharumspontaneum for cellulase production by Aspergillus terreus. Afr. J. Biotechnol. 11(21), 4914–4920 (2012).  https://doi.org/10.5897/AJB11.1194 Google Scholar
  44. 44.
    Ali, S., Sayed, A., Saker, R.I., Alam, R.: Factors affecting cellulose production by Aspergillus terreus using water hyacinth. J. Microbiol. Biotechnol. 7, 62–66 (1991)Google Scholar
  45. 45.
    Pushalkar, S., Rao, K.K., Menon, K.: Production of beta-glucosidase by Aspergillusterrus. Curr. Microbiol. 30, 255–258 (1995)CrossRefGoogle Scholar
  46. 46.
    da Silva, V.C.T., de Souza, A.L.C., Souza, R.C., Bertoldi, M., Neves, S., Gomes, E., Bonilla-Rodriguez, G.O.: Effect of pH, temperature, and chemicals on the endoglucanases and β-glucosidases from the thermophilic fungusMyceliophthoraheterothallica F. 2. 1. 4. obtained by solid-state and submerged cultivation. Biochem. Res. Int. (2016).  https://doi.org/10.1155/2016/9781216 Google Scholar
  47. 47.
    Acharya, P.B., Acharya, D.K., Modi, H.A.: Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr. J. Biotechnol. 7, 4147–4152 (2008)Google Scholar
  48. 48.
    Narra, M., Dixit, G., Divecha, J., Madamwar, D., Shah, A.M.: Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour. Technol. 121, 355–361 (2012)CrossRefGoogle Scholar
  49. 49.
    Hemansi, G.R., Kuhad, R.C., Saini, J.K.: Cost effective production of complete cellulase system by newly isolated Aspergillus niger RCKH-3 for efficient enzymatic saccharification: medium engineering by overall evaluation criteria approach (OEC). Biochem. Eng. J. 132, 182–190 (2018)CrossRefGoogle Scholar
  50. 50.
    Saida, L., Oberoi, H.S., Narasu, M.L.: Studies on cellulase production by solid state fermentation using sweet sorghum bagasse. Helix 1, 261–266 (2013)Google Scholar
  51. 51.
    Gao, D., Chundawat, S., Liu, T., Hermanson, S., Gowda, K., Brumm, P., Dale, B., Balan, V.: Strategy for identification of novel fungal and bacterial glycosyl hydrolase hybrid mixtures that can efficiently saccharify pretreated lignocellulosic biomass. Bioenergy Res. 3, 67–81 (2010)CrossRefGoogle Scholar
  52. 52.
    Jahromi, M.F., Liang, J.B., Rosfarizan, M., Goh, Y.M., Shokryazdan, P., Ho, Y.W.: Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr. J. Biotechnol. 10(21), 4428–4435 (2011)Google Scholar
  53. 53.
    Ilyas, U., Gohar, F., Saeed, S., Bukhari, Z., Ilyas, H.: Screening of locally isolated Aspergillus species for their cellulolytic potential and their optimization on Vigna mungo in solid state fermentation. British Biotechnol. J. 3(3), 350–358 (2013)CrossRefGoogle Scholar
  54. 54.
    El-Naggar, N.E., Haroun, S.A., Owis, E.A., Sherief, A.A.: Optimization of β-glucosidase production by Aspergillus terreus Strain EMOO 6-4 using response surface methodology under solid-state fermentation. J. Prep. Biochem. Biotechnol. 45(6), 568–587 (2015)CrossRefGoogle Scholar
  55. 55.
    Saritha, M., Tiwari, R., Singh, S., Nain, P.K.S., Rana, S., Adak, A., Arora, A., Nain, L.: Glycoside hydrolase production by Aspergillus terreus CM20 using mixed design approach for enhanced enzymatic saccharification of alkali pretreated paddy straw. Ind. J. Exp. Biol. 54, 518–524 (2016)Google Scholar
  56. 56.
    Kulkarni, N., Vaidya, T., Rathi, G.: Optimization of cellulase production by Aspergillus species under solid state fermentation. Pharma Inn. J. 7(1), 193–196 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
  2. 2.ICAR-Central Institute of Post-Harvest Engineering and TechnologyLudhianaIndia
  3. 3.YS Parmar University of Horticulture and ForestryNauniIndia
  4. 4.ICAR-Indian Institute of Millet ResearchHyderabadIndia
  5. 5.ICAR-Indian Institute of Horticultural ResearchBengaluruIndia

Personalised recommendations