Advertisement

Performance and Microbial Community Analysis of Anaerobic Digestion of Vinegar Residue with Adding of Acetylene Black or Hydrochar

  • Wenyang Guo
  • Yeqing LiEmail author
  • Kun Zhao
  • Quan Xu
  • Hao Jiang
  • Hongjun Zhou
Original Paper
  • 14 Downloads

Abstract

Conductive materials can accelerate and stabilize the conversion of organic substrates to biomethane via direct interspecies electron transfer (DIET). However, the potential effect of DIET on complex wastes, such as lignocellulosic biomass, is still unclear. In this study, acetylene black (AB) or hydrochar (HC) were used to enhance the anaerobic digestion (AD) performance of vinegar residue. Results found that methane yield was increased by 50% and 232% with adding 1.0 g/L of HC and AB, respectively. Higher electron conductivity (2.06 S/cm) and specific surface area (74.31 m2/g) of AB indicated effective syntrophic metabolism as compared to that of HC. Interestingly, mono-digestion of AB and HC can also produce methane, with CH4 yield of 23.8 and 118.2 mL/g, respectively. Microbial community analysis showed that family Syntrophomonadaceae and Methanosarcinaceae were enriched after adding of AB or HC, suggesting that the DIET might be facilitated.

Graphical Abstract

Keywords

Direct interspecies electron transfer Anaerobic digestion Hydrochar Acetylene black Vinegar residue 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51508572).

Supplementary material

12649_2019_664_MOESM1_ESM.docx (858 kb)
Supplementary material 1 (DOCX 857 KB)

References

  1. 1.
    Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., Lovley, D.R.: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330(6009), 1413–1415 (2010)CrossRefGoogle Scholar
  2. 2.
    Storck, T., Virdis, B., Batstone, D.J.: Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J. 10(3), 621–631 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, S., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R.: Promoting interspecies electron transfer with biochar. Sci. Rep. 4(5019), 5019 (2014)Google Scholar
  4. 4.
    Yan, W., Shen, N., Xiao, Y., Chen, Y., Sun, F., Kumar, V.T., Zhou, Y.: The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour. Technol. 239, 336 (2017)CrossRefGoogle Scholar
  5. 5.
    Zhao, Z., Zhang, Y., Li, Y., Dang, Y., Zhu, T., Quan, X.: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem. Eng. J. 313, 10–18 (2017)CrossRefGoogle Scholar
  6. 6.
    Dang, Y., Sun, D., Woodard, T.L., Wang, L.Y., Nevin, K.P., Holmes, D.E.: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour. Technol. 238, 30–38 (2017)CrossRefGoogle Scholar
  7. 7.
    Dang, Y., Holmes, D.E., Zhao, Z., Woodard, T.L., Zhang, Y., Sun, D., Wang, L.Y., Nevin, K.P., Lovley, D.R.: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour. Technol. 220, 516–522 (2016)CrossRefGoogle Scholar
  8. 8.
    Lee, J.Y., Lee, S.H., Park, H.D.: Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour. Technol. 205, 205–212 (2016)CrossRefGoogle Scholar
  9. 9.
    Kato, S., Hashimoto, K., Watanabe, K.: Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci USA 109(25), 10042–10046 (2012)CrossRefGoogle Scholar
  10. 10.
    Cruz, V.C., Rossetti, S., Fazi, S., Paiano, P., Majone, M., Aulenta, F.: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Technol. 48(13), 7536–7543 (2014)CrossRefGoogle Scholar
  11. 11.
    Lovley, D.R.: Syntrophy goes electric: direct interspecies electron transfer. Annu. Rev. Microbiol. 71(1), 643 (2017)CrossRefGoogle Scholar
  12. 12.
    Tian, T., Qiao, S., Li, X., Zhang, M., Zhou, J.: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 224, 41 (2016)CrossRefGoogle Scholar
  13. 13.
    Li, L.L., Tong, Z.H., Fang, C.Y., Chu, J., Yu, H.Q.: Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res. 70, 1–8 (2015)CrossRefGoogle Scholar
  14. 14.
    Huang, K.J., Liu, Y.J., Zhang, J.Z., et al: A sequence-specific DNA electrochemical sensor based on acetylene black incorporated two-dimensional CuS nanosheets and gold nanoparticles. Sens. Actuators B 209, 570–578 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Feng, L., Zhang, R., He, Y., Liu, X., Xiao, X., Ma, X., Chen, C., Liu, G.: Influence of inoculum source and pre-incubation on bio-methane potential of chicken manure and corn stover. Appl. Biochem. Biotechnol. 171(1), 117–127 (2013)CrossRefGoogle Scholar
  16. 16.
    Greenberg, A.E., Clesceri, L.S., Eaton, A.D.: Standard methods for the examination of water and wastewater. Am J Public Health Nations Health 56(3), 387–388 (1966).  https://doi.org/10.2105/AJPH.56.4.684-a CrossRefGoogle Scholar
  17. 17.
    Rincón, B., Heaven, S., Banks, C.J., Yue, Z.: Anaerobic digestion of whole-crop winter wheat silage for renewable energy production. Energy Fuels 26(4), 2357–2364 (2012)CrossRefGoogle Scholar
  18. 18.
    Lin, R., Cheng, J., Zhang, J., Zhou, J., Cen, K., Murphy, J.D.: Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 239, 345 (2017)CrossRefGoogle Scholar
  19. 19.
    Raposo, F., Fernándezcegrí, V., De la Rubia, M.A., Fernández, B., Fernández-Polanco, M., Frigon, J.C.: Biochemicalmethane potential (BMP) of solid organic substrates. J. Chem. Technol. Biotechnol. 86(8), 1088–1098 (2011)CrossRefGoogle Scholar
  20. 20.
    Camargo-Valero, M.A., Ross, A.B., Aragon-Briceno, C.: Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy, 208, 1357–1369 (2017)CrossRefGoogle Scholar
  21. 21.
    Pu, C., Liu, H., Ding, G., Sun, Y., Yu, X., Chen, J., Ren, J., Gong, X.: Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. J. Hazard. Mater. 344, 441–449 (2017)CrossRefGoogle Scholar
  22. 22.
    Xie, S., Lawlor, P.G., Frost, J.P., Hu, Z., Zhan, X.: Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage. Bioresour. Technol. 102(10), 5728–5733 (2011)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X.: Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 149(4), 406–412 (2013)CrossRefGoogle Scholar
  24. 24.
    Chen, S., Rotaru, A.E., Liu, F., Philips, J., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour. Technol. 173(1), 82 (2014)CrossRefGoogle Scholar
  25. 25.
    Liu, F., Rotaru, A.E., Shrestha, P.M., Malvankar, N.S., Nevin, K.P., Lovley, D.R.: Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 5(10), 8982–8989 (2012)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Mao, F., Loh, K.C., Gin, Y.H., Dai, Y., Tong, Y.W.: Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes. Bioresour. Technol. 249, 729–736 (2018)CrossRefGoogle Scholar
  27. 27.
    Li, X., Kang, F., Shen, W.: Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2 cathode for rechargeable lithium batteries. Carbon 44(7), 1334–1336 (2006)CrossRefGoogle Scholar
  28. 28.
    Chen, X., Lin, Q., He, R., Zhao, X., Li, G.: Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour Technol 241, 236–243 (2017).  https://doi.org/10.1016/j.biortech.2017.04.012 CrossRefGoogle Scholar
  29. 29.
    Liang, L., Hu, G., Cao, Y., Du, K., Peng, Z.: Synthesis and characterization of full concentration-gradient LiNi0.7Co0.1Mn0.2O2 cathode material for lithium-ion batteries. J. Alloys Compds. 635, 92–100 (2015)CrossRefGoogle Scholar
  30. 30.
    Li, Y., Zhang, R., Liu, G., Chang, C., He, Y., Liu, X.: Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour. Technol. 149(12), 565–569 (2013)CrossRefGoogle Scholar
  31. 31.
    Baek, G., Kim, J., Kim, J., Lee, C.: Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 11(1), 107 (2018)CrossRefGoogle Scholar
  32. 32.
    Viggi, C.C., Simonetti, S., Palma, E., Pagliaccia, P., Braguglia, C., Fazi, S., Baronti, S., Navarra, M.A., Pettiti, I., Koch, C.: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnol. Biofuels 10(1), 303 (2017)CrossRefGoogle Scholar
  33. 33.
    Walker, D.J., Adhikari, R.Y., Holmes, D.E., Ward, J.E., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 12(1), 48 (2017)CrossRefGoogle Scholar
  34. 34.
    Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P.: Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6(9), 573–579 (2011)CrossRefGoogle Scholar
  35. 35.
    Lee, Y.J., Romanek, C.S., Wiegel, J.: Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int. J. Syst. Evol. Microbiol. 57(Pt 2), 311–315 (2007)CrossRefGoogle Scholar
  36. 36.
    Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J., Rabaey, K.: Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101(4), 1233–1238 (2010)CrossRefGoogle Scholar
  37. 37.
    Lovley, D.R.: Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol. 4(7), 497 (2006)CrossRefGoogle Scholar
  38. 38.
    Bouanane-Darenfed, A., Fardeau, M.L., Ollivier, B.: The Family Caldicoprobacteraceae. (2014, pp. 13–17Google Scholar
  39. 39.
    Paul, S.S., Deb, S.M., Punia, B.S., Singh, D., Kumar, R.: Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J. Sci. Food Agric. 90(7), 1218 (2010)CrossRefGoogle Scholar
  40. 40.
    Müller, N., Schleheck, D., Schink, B.: Involvement of NADH:acceptor oxidoreductase and butyryl coenzyme A dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J. Bacteriol. 191(19), 6167 (2009)CrossRefGoogle Scholar
  41. 41.
    Kong, X., Yu, S., Fang, W., Liu, J., Li, H.: Enhancing syntrophic associations among Clostridium butyricum, Syntrophomonas and two types of methanogen by zero valent iron in an anaerobic assay with a high organic loading. Bioresour. Technol. 257, 181 (2018)CrossRefGoogle Scholar
  42. 42.
    Xu, S., He, C., Luo, L., Lü, F., He, P., Cui, L.: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour. Technol. 196, 606–612 (2015)CrossRefGoogle Scholar
  43. 43.
    Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovley, D.R.: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80(15), 4599–4605 (2014)CrossRefGoogle Scholar
  44. 44.
    Frankewhittle, I.H., Walter, A., Ebner, C., Insam, H.: Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 34(11), 2080–2089 (2014)CrossRefGoogle Scholar
  45. 45.
    Zhao, Z., Zhang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour. Technol. 191, 140 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Wenyang Guo
    • 1
  • Yeqing Li
    • 1
    Email author
  • Kun Zhao
    • 1
  • Quan Xu
    • 1
  • Hao Jiang
    • 1
  • Hongjun Zhou
    • 1
  1. 1.State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and MaterialsChina University of Petroleum Beijing (CUPB)BeijingPeople’s Republic of China

Personalised recommendations