Advertisement

Isolation and Identification of Endosulfan Degrading Native Bacterial Consortium from Agricultural Soils

  • Ayla BilginEmail author
  • Selim L. Sanin
Original Paper
  • 14 Downloads

Abstract

The environmental impact of chlorinated pesticides, including endosulfan, is not only caused by their persistency in the ecosystem but also from their toxic effects on off-target living organisms. In this study, three different strains of microorganisms, namely Afipia genosp, Sphingomonas yanoikuyae Q1 and Methylobacterium rhodesianum that are capable of biodegrading endosulfan at low concentrations (100 µg/L) from a tea cultivation field were reported. The isolated microbial consortium biodegraded 59% of the total endosulfan (63% α-endosulfan, 57% β-endosulfan) at pH 6.5. The same consortium biodegraded 98% of the total endosulfan (96% of α-endosulfan, 97% of β-endosulfan) at pH 8.4. All endosulfan removal performances were observed for a period of 25 days and the experiments were conducted at 25 °C, which was a relatively lower temperature compared to other endosulfan biodegradation studies in the literature. Additional carbon source did not change the overall endosulfan removal. No endosulfan sulfate production was observed during the study.

Keywords

Endosulfan Biodegradation Afipia genosp Sphingomonas yanoikuyae Q1 Methylobacterium rhodesianum 

Notes

References

  1. 1.
    Gupta, P.K., Gupta, R.C.: Pharmacology, toxicology and degradation of endosulfan A review. Toxicology 13(2), 115–130 (1979)CrossRefGoogle Scholar
  2. 2.
    Sun, X., Zhu, L., Wang, J., Wand, J., Su, B., Du, Z., Dua, P.: Effects of endosulfan on the populations of cultivable microorganisms and the diversity of bacterial community structure in Brunisolic soil. Water Air Soil Pollut. 228, 169 (2017)CrossRefGoogle Scholar
  3. 3.
    Falkowska, L., Reindl, A.R., Szumiło, E., Kwaśniak, J., Staniszewska, M., Bełdowska, M., Lewandowska, A., Krause, I.: Mercury and chlorinated pesticides on the highest level of the food web as exemplified by herring from the Southern Baltic and African penguins from the zoo. Water Air Soil Pollut. 224(5), 1549 (2013)CrossRefGoogle Scholar
  4. 4.
    Weber, J., Halsall, C.J., Muir, D., Teixeira, C., Small, J., Solomon, K., Hermanson, M., Hung, H., Bidleman, T.: Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 408(15), 2966–2984 (2010)CrossRefGoogle Scholar
  5. 5.
    Bajaj, A., Pathak, A., Mudiam, M.R., Mayilraj, S., Manickam, N.: Isolation and characterization of a Pseudomonas sp. strain IITR01 capable of degrading -endosulfan and endosulfan sulfate. J. Appl. Microbiol. 109(6), 2135–2143 (2010)CrossRefGoogle Scholar
  6. 6.
    ATSDR.: Toxicological profile for endosulfan. U.S. Department of Health and Human Services Public Health Service Agency For Toxic Substances and Disease Registry, 323 (2015)Google Scholar
  7. 7.
    Mukherjee, I., Mittal, A.: Bioremediation of endosulfan using Aspergillus and Cladosporium oxysporum. Bull. Environ. Contam. Toxicol. 75, 1034–1040 (2005)CrossRefGoogle Scholar
  8. 8.
    Cotham, W.E.J., Bidleman, T.F.: Degradation of malathion, endosulfan and fenvelarate in seawater and sea water/sediment in microcosms. J. Agric. Food Chem. 37, 824–828 (1989)CrossRefGoogle Scholar
  9. 9.
    Sutherland, T.D., Weir, K.M., Lacey, M.J., Horne, I., Russell, R.J., Oakeshott, J.G.: Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J. Appl. Microbiol. 92, 541–548 (2002)CrossRefGoogle Scholar
  10. 10.
    Shetty, P.K., Mitra, J., Murthy, N.B.K., Namitha, K.K., Savitha, K.N., Raghu, K.: Biodegradation of cyclodiene insecticide Endosulfan by Mucor thermohyalospora MTCC 1384. Curr. Sci. 79(9), 1381–1383 (2000)Google Scholar
  11. 11.
    Kaur, I., Mathur, R.P., Tandon, S.N.: Persistence of endosulfan (technical) in water and soil. Environ. Technol. 19, 115–119 (1998)CrossRefGoogle Scholar
  12. 12.
    Taira, K., Hayase, N., Arimura, N., Yamashita, S., Miyazaki, T., Furukawa, K.: Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry, 27, 3990–3996 (1998)CrossRefGoogle Scholar
  13. 13.
    Kumar, M., Laksmi, C.V., Khanna, S.: Biodegradation and bioremediation of endosulfan contaminated soil. Biores. Technol. 99, 3116–3122 (2008)CrossRefGoogle Scholar
  14. 14.
    Arshad, M., Hussain, S., Saleem, M.: Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J. Appl. Microbiol. 104(2), 364–370 (2008)Google Scholar
  15. 15.
    Elsaid, O.E.G., Abdelbagi, A.O., Elsheikhc, E.A.E.: Microbial degradation of endosulfan in carbon free media and selective media. Res. J. Agric. Biol. Sci. 6(3), 257–562 (2010)Google Scholar
  16. 16.
    Masoud, A.A., Abdel-Wahab Arafa, N.A., El-Bouraie, M.: Patterns and trends of the pesticide pollution of the shallow Nile Delta Aquifer (Egypt). Water Air Soil Pollut. 229, 148 (2018)CrossRefGoogle Scholar
  17. 17.
    Sutherland, T.D., Horne, I., Lacey, M.J., Harcourt, R.L., Russell, R.J., Oakeshott, J.G.: Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66, 2822–2828 (2000)CrossRefGoogle Scholar
  18. 18.
    Stefan, R.I., Atlas, R.M.: Polymerase chain reaction. Appl. Environ. Microbiol. 45, 137–161 (1991)Google Scholar
  19. 19.
    Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)Google Scholar
  20. 20.
    EPA Method 508.1., Determination of Chlorinated Pesticides, Herbicides, and Organohalides by Liquid-Solid Extraction and Electron Capture Gas Chromatography -Revision 2.0.38 ppGoogle Scholar
  21. 21.
    Kwon, G.S., Sohn, H.Y., Shin, K.S., Kim, E., Seo, B.: Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845–850 (2005)CrossRefGoogle Scholar
  22. 22.
    Lee, J.B., Sohn, H.Y., Shin, K.S., Jo, M.S., Kim, J.E.,. Lee, S.W., Shin, J.W., Kum, E.J., Kwon, G.S.: Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food Chem. 54, 8824–8828 (2006)CrossRefGoogle Scholar
  23. 23.
    Bergey, D.H., Holt, J.G.: Bergey’s Manual of Systematic Bacteriology. Lippincott Williams & Wilkins, Philadelphia p. 787 (1994)Google Scholar
  24. 24.
    Bodour, A.A., Wang, J.M., Brusseau, M.L., Maier, R.M.: Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ. Microbiol. 5, 888–895 (2003)CrossRefGoogle Scholar
  25. 25.
    Moosvi, S.A., McDonald, I.R., Pearce, D.A., Kelly, D.P., Wood, A.P.: Molecular detection and isolation from Antarctica of methylotrophic bacteria able to grow with methylated sulfur compounds. Syst. Appl. Microbiol. 28, 541–554 (2005)CrossRefGoogle Scholar
  26. 26.
    Wittich, R.M., Wilkes, H., Sinnwell, V., Francke, W., Fortnagel, P.: Metabolism of dibenzo-p-dioxin by Sphingomonas sp. Appl. Environ. Microbiol. strain RW1, 58, 1005–1010 (1992)Google Scholar
  27. 27.
    Mohn, W.W.: Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid. Appl. Environ. Microbiol. 61, 2145–2150 (1995)Google Scholar
  28. 28.
    Imai, R., Nagata, Y., Fukuda, M., Takagi, M., Yano, K.: Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from gamma-hexachlorocyclohexane. J. Bacteriol. 173, 6811–6819 (1991)CrossRefGoogle Scholar
  29. 29.
    Nohynek, L., Nurmiaho-Lassila, E., Suhonen, E., Busse, H., Mohammadi, M., Hantula, J.: Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov.. Int. J. Syst. Evol. Microbiol. 46, 1042–1055 (1996)Google Scholar
  30. 30.
    Ka, J., Holben, W., Tiedje, J.: Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D treated field soils. Appl. Environ. Microbiol. 60, 1106–1115 (1994)Google Scholar
  31. 31.
    Khan, A., Wang, R., Cao, W., Franklin, W., Cerniglia, C.: Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNADNA hybridization, and 16S ribosomal DNA sequencing. Int. J. Syst. Evol. Microbiol. 46, 466–469 (1996)Google Scholar
  32. 32.
    Green, P.N., Bousfield, I.J.: A taxonomic study of some gram-negative facultative methylotrophic bacteria. J. Gen. Microbiol. 128, 623–638 (1982)Google Scholar
  33. 33.
    Goswami, S., Singh, D.K.: Biodegradation of a and b endosulfan in broth medium and soil microcosm by bacterial strain Bordetella sp. Biodegradation B9, 20, 199–207 (2009)CrossRefGoogle Scholar
  34. 34.
    Kataoka, R., Takagi, K.: Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Appl Microbiol Biotechnol. 97(8), 3285–3292 (2013)CrossRefGoogle Scholar
  35. 35.
    Awasthi, N., Manickam, N., Kumar, A.: Biodegradation of endosulfan by a bacterial coculture. Bull. Environ. Contam. Toxicol. 59(6), 928–934 (1997)CrossRefGoogle Scholar
  36. 36.
    Kumar, M., Philip, L.: Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioremediat. J. 10(4), 179–190 (2006)CrossRefGoogle Scholar
  37. 37.
    Bhalerao, T.S., Puranik, P.R.: Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int. Biodeterior. Biodegrad. 59(4), 315–321 (2007)CrossRefGoogle Scholar
  38. 38.
    Singh, N.S., Singh, D.K.: Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22(5), 845–857 (2011)CrossRefGoogle Scholar
  39. 39.
    Awasthi, N., Ahuja, R., Kumar, A.: Factors influencing the degradation of soil-applied endosulfan isomers. Soil Biol. Biochem. 32, 1697–1705 (2000)CrossRefGoogle Scholar
  40. 40.
    Hussain, S., Arshad, M., Saleem, M., Zahir, Z.A.: Screening of soil fungi for in vitro degradation of endosulfan. World J. Microbiol. Biotechnol. 23, 939–945 (2007)CrossRefGoogle Scholar
  41. 41.
    Awasthi, N., Singh, A.K., Jain, R.K., Khangarot, B.S., Kumar, A.: Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279–283 (2003)CrossRefGoogle Scholar
  42. 42.
    Siddique, T., Okeke, B.C., Arshad, M., Frankenberger, W.T.J.: Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species. J. Agric. Food Chem. 51(27), 8015–8019 (2003)CrossRefGoogle Scholar
  43. 43.
    Kumar, K., Devi, S.S., Krishnamurthi, K., Kanade, G.S., Chakrabarti, T.: Enrichment and isolation of endosulfan Degrading and detoxifying bacteria. Chemosphere 68, 317–322 (2007)CrossRefGoogle Scholar
  44. 44.
    Thangadurai, P., Suresh, S.: Biodegradation of endosulfan by soil bacterial cultures. Int. Biodeterior. Biodegrad. 94, 38–47 (2014)CrossRefGoogle Scholar
  45. 45.
    Mukherjee, I., Gopal, M.: Degradation of beta-endosulfan by Aspergillus niger. Toxicol. Environ. Chem. 46, 217–221 (1994)CrossRefGoogle Scholar
  46. 46.
    Katayama, A., Matsumura, F.: Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ. Toxicol. Chem. 12(6), 1059–1065 (1993)CrossRefGoogle Scholar
  47. 47.
    Kullman, S., Matsumura, F.: Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan, Appl, Environ, Microbiol,, 593–600 (1996)Google Scholar
  48. 48.
    Guha, A., Kumari, B., Bora, T.C., Deka, P.C., Roy, M.K.: Bioremediation of endosulfan by Micrococcus sp. Indian J. Environ. Health 42, 9–12 (2000)Google Scholar
  49. 49.
    Lee, S.E., Kim, J.S., Kennedy, I.R., Park, J.W., Kwon, G.S., Koh, S.C., Kim, J.E.: Biotransformation of an organochlorine insecticide, endosulfan by Anabaena species. J. Agric. Food Chem. 51(5), 1336–1340 (2003)CrossRefGoogle Scholar
  50. 50.
    Park, B.S., Lee, S.E.: Biotransformation of β-endosulfan by Anabaena sp. PCC 7120. Agric. Chem. Biotechnol. 47(1), 38–41 (2004)Google Scholar
  51. 51.
    Sethunathan, N., Megharaj, M., Chen, Z.L., Williams, B.D., Lewis, G., Naidu, R.: Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J. Agric. Food Chem. 52, 3030–3035 (2004)CrossRefGoogle Scholar
  52. 52.
    Weir, K.M., Sutherland, T.D., Horne, I., Russell, R.J., Oakeshott, J.G.: A single monooxygenase, Ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl. Environ. Microbiol. 72, 3524–3530 (2006)CrossRefGoogle Scholar
  53. 53.
    Kalyani, S., Sharma, J., Singh, S., Dureja, P.: Enrichment and isolation of endosulfan-degrading microorganism from tropical acid soil. J. Environ. Sci. Health B 44, 663–672 (2009)CrossRefGoogle Scholar
  54. 54.
    Li, W., Dai, Y., Xue, B., Li, Y., Peng, X., Zhang, J., Yan, Y.: Biodegradation and detoxification of endosulfan in aqueous medium and soil by Achromobacter xylosoxidans strain CS5. J. Hazard. Mater. 167, 209–216 (2009)CrossRefGoogle Scholar
  55. 55.
    Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., Sun, F.: Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J. Environ. Sci. 25(11), 2257–2264 (2013)CrossRefGoogle Scholar
  56. 56.
    Narkhede, C.P., Patil, A.R., Koli, S., Suryawanshi, R., Wagh, N.D., Salunke, B.K., Patil, S.V.: Studies on endosulfan degradation by local isolate Pseudomonas aeruginosa. Biocatal. Agric. Biotechnol. 4(2), 259–265 (2015)CrossRefGoogle Scholar
  57. 57.
    Ito, K., Kawashima, F., Takagi, K., Kataoka, R., Kotake, M., Kiyota, H., Yamazaki, K., Sakakibara, F., Okada, S.: Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate. Biochem. Biophys. Res. Commun. 473(4), 1094–1099 (2016)CrossRefGoogle Scholar
  58. 58.
    Chauhan, A., Pathak, A., Ewida, A.Y., Griffiths, Z., Stothard, P.: Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River. Florida. Genomics Data 8, 134–138 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental EngineeringArtvin Coruh UniversityArtvinTurkey
  2. 2.Department of Environmental EngineeringHacettepe UniversityBeytepeTurkey

Personalised recommendations