Advertisement

Effect of Leachate Spraying Intensity on High-Solid Anaerobic Digestion of Corn Stover and Organic Fraction of Municipal Solid Waste

  • Mingyu Qian
  • Ye Zhou
  • Yixin Zhang
  • Zhenxin Wang
  • Ruihua Li
  • Hao Jiang
  • Hongjun Zhou
  • Yeqing LiEmail author
Original Paper
  • 15 Downloads

Abstract

The effects of leachate spraying intensity (LSI, the ratio of leachate spraying rate and spraying area) on high-solid anaerobic digestion (HS-AD) of corn stover (CS) and organic fraction of municipal solid waste (OFMSW) were investigated for the first time. Three leach-bed reactors (LBR) with working volume of 48 L were used in this study. Gaseous parameters including CH4, H2 and CO2 concentration, and liquid parameters including pH, volatile fatty acid (VFA) and total inorganic carbon (TIC), were measured. Results found that LSI could significant influence the methane yield from HS-AD of CS and OFMSW. Higher LSI of 88 mL/min dm2 could enhance the degradation rate of feedstocks, with highest VFA concentration of 21273 mg/L using liquid sludge as inoculum. Consequently, the methanogenesis was inhibited. Incubation of solid digestate (50% of solid digestate + 50 of liquid sludge) can be operated stably at higher LSI of 88 mL/min dm2, where highest methane yield of 184.6 mL/g VS was obtained. The finding of this study could provide useful information for the efficient operation of HS-AD.

Keywords

High-solid anaerobic digestion Corn stover Municipal solid waste Leach-bed reactors 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51508572).

References

  1. 1.
    Pezzolla, D., Di Maria, F., Zadra, C., Massaccesi, L., Sordi, A., Gigliotti, G.: Optimization of solid-state anaerobic digestion through the percolate recirculation. Biomass Bioenerg. 96, 112–118 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Su, D., Luo, S., Jiang, H., Qian, M., Zhou, H., Xu, Q.: Pyrolysis gas as a carbon source for biogas production via anaerobic digestion. RSC Adv. 7(66), 41889–41895 (2017)CrossRefGoogle Scholar
  3. 3.
    Li, Y., Liu, H., Yan, F., Su, D., Wang, Y., Zhou, H.: High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system. Bioresour. Technol. 224, 56–62 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Xu, L., Liang, Y.G., Yang, S., Liu, X.H.: Evaluation of semi-dry mesophilic anaerobic co-digestion of corn stover and vegetable waste by a single-phase process. Waste Biomass Valoriz. (2017).  https://doi.org/10.1007/s12649-017-0133-5
  5. 5.
    Degueurce, A., Trémier, A., Peu, P.: Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: influence of recirculated volume, leachate to substrate ratio and recirculation periodicity. Bioresour. Technol. 216, 553–561 (2016)CrossRefGoogle Scholar
  6. 6.
    Li, Y., Yan, F., Li, T., Zhou, Y., Jiang, H., Qian, M., Xu, Q.: High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette. Bioresour. Technol. 250, 741–749 (2018)CrossRefGoogle Scholar
  7. 7.
    Zhang, G., Zhang, Z., Li, C.: Improvement of solid-state anaerobic digestion of yard waste by co-digestion and pH adjustment. Waste Biomass Valoriz. 9(2), 211–221 (2018)CrossRefGoogle Scholar
  8. 8.
    Chen, S., Li, N., Dong, B., Zhao, W., Dai, L., Dai, X.: New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: organic matter degradation and methanogenic pathways. J. Hazard. Mater. 342, 1–9 (2018)CrossRefGoogle Scholar
  9. 9.
    Capson-Tojo, G., Trably, E., Rouez, M., Crest, M., Steyer, J.P., Delgenès, J.P., Escudié, R.: Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresour. Technol. 233, 166–175 (2017)CrossRefGoogle Scholar
  10. 10.
    Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J.P., Steyer, J.P., Escudié, R.: Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111, 55–61 (2012)CrossRefGoogle Scholar
  11. 11.
    Riggio, S., Torrijos, M., Vives, G., Esposito, G., Van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors. Bioresour. Technol. 232, 93–102 (2017)CrossRefGoogle Scholar
  12. 12.
    Riggio, S., Torrijos, M., Debord, R., Esposito, G., Van Hullebusch, E.D., Steyer, J.P., Escudié, R.: Mesophilic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manage. 59, 129–139 (2017)CrossRefGoogle Scholar
  13. 13.
    Hegde, G., Pullammanappallil, P.: Comparison of thermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environ. Technol. 28(4), 361–369 (2007)CrossRefGoogle Scholar
  14. 14.
    Benbelkacem, H., Bayard, R., Abdelhay, A., Zhang, Y., Gourdon, R.: Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. Bioresour. Technol. 101(14), 5206–5212 (2010)CrossRefGoogle Scholar
  15. 15.
    Nizami, A.S., Korres, N.E., Murphy, J.D.: Review of the integrated process for the production of grass biomethane. Environ. Sci. Technol. 43(22), 8496–8508 (2009)CrossRefGoogle Scholar
  16. 16.
    Shahriari, H., Warith, M., Hamoda, M., Kennedy, K.J.: Effect of leachate recirculation on mesophilic anaerobic digestion of food waste. Waste Manage. 32(3), 400–403 (2012)CrossRefGoogle Scholar
  17. 17.
    Rico, C., Montes, J.A., Muñoz, N., Rico, J.L.: Thermophilic anaerobic digestion of the screened solid fraction of dairy manure in a solid-phase percolating reactor system. J. Clean. Prod. 102, 512–520 (2015)CrossRefGoogle Scholar
  18. 18.
    Xu, S.Y., Karthikeyan, O.P., Selvam, A., Wong, J.W.: Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: Effect of different leachate recirculation practices. Bioresour. Technol. 168, 41–48 (2014)CrossRefGoogle Scholar
  19. 19.
    Murovec, B., Kolbl, S., Stres, B.: Methane yield database: online infrastructure and bioresource for methane yield data and related metadata. Bioresour. Technol. 189, 217–223 (2015)CrossRefGoogle Scholar
  20. 20.
    Federation, W.E., American Public Health Association.: Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC (2005)Google Scholar
  21. 21.
    Nie, H., Jacobi, H.F., Strach, K., Xu, C., Zhou, H., Liebetrau, J.: Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate. Bioresour. Technol. 178, 238–246 (2015)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Zhang, R., He, Y., Liu, X., Chen, C., Liu, G.: Thermophilic solid-state anaerobic digestion of alkaline-pretreated corn stover. Energ. Fuel. 28(6), 3759–3765 (2014)CrossRefGoogle Scholar
  23. 23.
    Nielfa, A., Cano, R., Vinot, M., Fernández, E., Fdz-Polanco, M.: Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Safety Environ. Protection 94, 180–187 (2015)CrossRefGoogle Scholar
  24. 24.
    Qian, M., Zhang, Y., Li, R., Nelles, M., Stinner, W., Li, Y.: Effects of percolate recirculation on dry anaerobic co-digestion of organic fraction of municipal solid waste and corn straw. Energ. Fuel. 31(11), 12183–12191 (2017)CrossRefGoogle Scholar
  25. 25.
    Batstone, D.J., Tait, S., Starrenburg, D.: Estimation of hydrolysis parameters in full-scale anerobic digesters. Biotech. Bioeng. 102(5), 1513–1520 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., Liu, X.: Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresour. Technol. 149, 406–412 (2013)CrossRefGoogle Scholar
  27. 27.
    Siegert, I., Banks, C.: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 40(11), 3412–3418 (2005)CrossRefGoogle Scholar
  28. 28.
    Li, Y., Su, D., Feng, H., Yan, F., Liu, H., Feng, L., Liu, G.: Anaerobic acidogenic fermentation of food waste for mixed-acid production. Energ. Source A 39(7), 631–635 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mingyu Qian
    • 1
    • 2
    • 3
  • Ye Zhou
    • 1
  • Yixin Zhang
    • 1
  • Zhenxin Wang
    • 1
  • Ruihua Li
    • 1
  • Hao Jiang
    • 1
  • Hongjun Zhou
    • 1
  • Yeqing Li
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and MaterialsChina University of Petroleum Beijing (CUPB)BeijingPeople’s Republic of China
  2. 2.Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
  3. 3.Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbHBeijingPeople’s Republic of China
  4. 4.China University of Petroleum Beijing (CUPB)BeijingPeople’s Republic of China

Personalised recommendations