Advertisement

Obtaining Plant and Soil Biostimulants by Waste Whey Fermentation

  • Pablo Caballero
  • Bruno Rodríguez-Morgado
  • Sandra Macías
  • Manuel Tejada
  • Juan ParradoEmail author
Original Paper
  • 42 Downloads

Abstract

This work presents the design of a bioprocess as an integral solution for adding value to whey by converting it into high value-added products for environmental/agronomical purposes as biostimulants for both soils and plants . The core of the bioprocess is a fermentation by Lactobacillus rhamnosus, a bacterial species within the group of plant growth promoting bacteria (PGPB), followed by a physicochemical separation of the valuable products obtained. The soil biostimulant products obtained are lactic acid, peptides and free amino acids and the biomass of Lactobacillus rhamnosus. All of these products were purified and the residual fraction, mainly comprising inorganic elements with high sodium content, was removed in order to avoid soil fertility problems. These products were evaluated on their soil biostimulant and biocontrol capacity, thus protein hydrolysates and lactic acid induced microbial activity, lactic acid also showed an effect modifying microbial biodiversity, favouring bacterial genera recognized as growth plants promoter, and L. rhamonsus presented biocontrol activity against some phytopathogenic microorganisms. These results give rise to the formulation of products for environmental/agronomic application.

Graphical Abstract

Keywords

Whey Lactobacillus rhamnosus Lactic acid Protein hydrolysate Biocontrol Biostimulants 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Innovation (Spain), Plan Estatal 2013–2016 Retos—Proyectos I + D + i CTM2015-64354-C3-1-R.

References

  1. 1.
    Ghasemi, M., Ahmad, A., Jafary, T., Azad, A.K., Kakooei, S., Daud, W., Sedighi, W.R.: M.: Assessment of immobilized cell reactor and microbial fuel cell for simultaneous cheese whey treatment and lactic acid/electricity production. Int. J. Hydrogen Energy. 42, 9107–9115 (2017).  https://doi.org/10.1016/j.ijhydene.2016.04.136 CrossRefGoogle Scholar
  2. 2.
    Marwaha, S.S., Kennedy, J.F.: Whey—pollution problem and potential utilization. Int. J. Food Sci. Technol. 23, 323–336 (1988).  https://doi.org/10.1111/j.1365-2621.1988.tb00586.x CrossRefGoogle Scholar
  3. 3.
    Siso, M.I.G.: The biotechnological utilization of cheese whey: a review. Bioresour. Technol. 57, 1–11 (1996).  https://doi.org/10.1016/0960-8524(96)00036-3 CrossRefGoogle Scholar
  4. 4.
    Kalyuzhnyi, S.V., Martinez, E.P., Martinez, J.R.: Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors. Bioresour. Technol. 60, 59–65 (1997).  https://doi.org/10.1016/S0960-8524(96)00176-9 CrossRefGoogle Scholar
  5. 5.
    Mawson, A.J.: Bioconversions for whey utilization and waste abatement. Bioresour. Technol. 47, 195–203 (1994).  https://doi.org/10.1016/0960-8524(94)90180-5 CrossRefGoogle Scholar
  6. 6.
    du Jardin, P.: Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. (Amsterdam). 196, 3–14 (2015).  https://doi.org/10.1016/J.SCIENTA.2015.09.021 CrossRefGoogle Scholar
  7. 7.
    Prazeres, A.R., Carvalho, F., Rivas, J.: Cheese whey management: a review. J. Environ. Manage. 110, 48–68 (2012).  https://doi.org/10.1016/j.jenvman.2012.05.018 CrossRefGoogle Scholar
  8. 8.
    Robbins, C.W., Lehrsch, G.A.: Cheese whey as a soil conditioner. Handb. Soil Cond. Subst. Enhanc. Phys. Prop. Soil. 1, 167–185 (1998)Google Scholar
  9. 9.
    Aboukila, E., Abdelraouf, E., Gomma, I.: Effects of cheese whey on some chemical and physical properties of calcareous and clay soils. Int. J. Plant Soil Sci. 21, 1–12 (2018).  https://doi.org/10.9734/IJPSS/2018/39082 CrossRefGoogle Scholar
  10. 10.
    Grosu, L., Fernandez, B., Grigoras, C.G., Patriciu, O.I., Grig-Alexa, I.-C., Nicuta, D., Ciobanu, D., Gavrila, L., Finaru, A.L.: Valorization of whey from dairy industry for agricultural use as fertiliser: effects on plant germination and growth. Environ. Eng. Manag. J. 11, 2203–2210 (2012).  https://doi.org/10.1016/j.ancene.2014.05.002 CrossRefGoogle Scholar
  11. 11.
    Dragone, G., Mussatto, S.I., Oliveira, J.M., Teixeira, J.A.: Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 112, 929–935 (2009).  https://doi.org/10.1016/J.FOODCHEM.2008.07.005 CrossRefGoogle Scholar
  12. 12.
    Peterson, A.E., Walker, W.G., Watson, K.S.: Effect of whey applications on chemical properties of soils and crops. J. Agric. Food Chem. 27, 654–658 (1979).  https://doi.org/10.1021/jf60224a064 CrossRefGoogle Scholar
  13. 13.
    Clément, M., Tremblay, J., Lange, M., Thibodeau, J., Belhumeur, P.: Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity. J. Dairy Sci. 91, 2535–2544 (2008).  https://doi.org/10.3168/jds.2007-0806 CrossRefGoogle Scholar
  14. 14.
    Pane, C., Celano, G., Villecco, D., Zaccardelli, M.: Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Prot. 38, 80–86 (2012).  https://doi.org/10.1016/J.CROPRO.2012.03.012 CrossRefGoogle Scholar
  15. 15.
    Bettiol, W., Silva, H.S.A., Reis, R.C.: Effectiveness of whey against zucchini squash and cucumber powdery mildew. Sci. Hortic. (Amsterdam). 117, 82–84 (2008).  https://doi.org/10.1016/j.scienta.2008.03.010 CrossRefGoogle Scholar
  16. 16.
    Caplice, E., Fitzgerald, G.F.: Food fermentations: Role of microorganisms in food production and preservation. (1999). http://www.ncbi.nlm.nih.gov/pubmed/10488849,
  17. 17.
    Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y.: Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 33, 756–774 (2015).  https://doi.org/10.1016/J.BIOTECHADV.2015.07.002 CrossRefGoogle Scholar
  18. 18.
    Shrestha, A., Kim, B.S., Park, D.H.: Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci. Technol. 24, 763–779 (2014).  https://doi.org/10.1080/09583157.2014.894495 CrossRefGoogle Scholar
  19. 19.
    Jones, D.L.: Organic acids in the rhizosphere—a critical review. Plant Soil. 205, 25–44 (1998).  https://doi.org/10.1023/A:1004356007312 CrossRefGoogle Scholar
  20. 20.
    Rodríguez-Morgado, B., Jiménez, P.C., Moral, M.T., Rubio, J.P.: Effect of l-lactic acid from whey wastes on enzyme activities and bacterial diversity of soil. Biol. Fertil. Soils. 53, 389–396 (2017).  https://doi.org/10.1007/s00374-017-1187-z CrossRefGoogle Scholar
  21. 21.
    Bolan, N.S., Naidu, R., Mahimairaja, S., Baskaran, S.: Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils. 18, 311–319 (1994).  https://doi.org/10.1007/BF00570634 CrossRefGoogle Scholar
  22. 22.
    De man, rogosa and sharpe (MRS) agar. Prog. Ind. Microbiol. 34, 362–363 (1995).  https://doi.org/10.1016/S0079-6352(05)80056-6
  23. 23.
    Parrado, J., Rodriguez-Morgado, B., Tejada, M., Hernandez, T., Garcia, C.: Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme Microb. Technol. 57, 1–7 (2014).  https://doi.org/10.1016/j.enzmictec.2014.01.001 CrossRefGoogle Scholar
  24. 24.
    Tavares, N., Penedo, P.: Molecular identification of Monascus purpureus NART001 isolated from commercially available Chinese red fermented rice. Biomed. Biopharm. Res. 14, 88–94 (2017).  https://doi.org/10.19277/bbr.14.1.152 Google Scholar
  25. 25.
    Kwak, H., Hwang, D.W., Hwang, Y.K., Chang, J.S.: Recovery of alkyl lactate from ammonium lactate by an advanced precipitation process. Sep. Purif. Technol. 93, 25–32 (2012).  https://doi.org/10.1016/j.seppur.2012.03.025 CrossRefGoogle Scholar
  26. 26.
    Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z., An, D.: Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44, 29–37 (2013).  https://doi.org/10.1016/J.CROPRO.2012.10.012 CrossRefGoogle Scholar
  27. 27.
    Spelhaug, S.U.E.R., Harlander, S.K.: Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous 1. J. Food Prot. 52, 856–862 (1989).  https://doi.org/10.4315/0362-028X-52.12.856 CrossRefGoogle Scholar
  28. 28.
    von Mersi, W., Schinner, F.: An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol. Fertil. Soils. 11, 216–220 (1991).  https://doi.org/10.1007/BF00335770 CrossRefGoogle Scholar
  29. 29.
    FAO: World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. FAO. (2015)Google Scholar
  30. 30.
    Herlemann, D.P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F.: Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).  https://doi.org/10.1038/ismej.2011.41 CrossRefGoogle Scholar
  31. 31.
    Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  32. 32.
    Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R.: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).  https://doi.org/10.1128/AEM.00062-07 CrossRefGoogle Scholar
  33. 33.
    Chen, W.L., Hwang, M.T., Liau, C.Y., Ho, J.C., Hong, K.C., Mao, S.J.T.: Beta-lactoglobulin is a thermal marker in processed milk as studied by electrophoresis and circular dichroic spectra. J. Dairy Sci. 88, 1618–1630 (2005).  https://doi.org/10.3168/jds.S0022-0302(05)72833-2 CrossRefGoogle Scholar
  34. 34.
    Panesar, P., Kennedy, J., Gandhy, D., Bunko, K.: Bioutilisation of whey for lactic acid production. Food Chem. 105, 1–14 (2007).  https://doi.org/10.1016/j.foodchem.2007.03.035 CrossRefGoogle Scholar
  35. 35.
    Dangin, M., Guillet, C., Garcia-Rodenas, C., Gachon, P., Bouteloup-Demange, C., Reiffers-Magnani, K., Fauquant, J., Ballèvre, O., Beaufrère, B.: The rate of protein digestion affects protein gain differently during aging in humans. J. Physiol. 549, 635–644 (2003).  https://doi.org/10.1016/j.parco.2007.12.005 CrossRefGoogle Scholar
  36. 36.
    Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G.: Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100, 3713–3717 (2009).  https://doi.org/10.1016/j.biortech.2009.01.025 CrossRefGoogle Scholar
  37. 37.
    Ladd, J.N., Paul, E.A.: Changes in enzymic activity and distribution of acid-soluble, amino acid-nitrogen in soil during nitrogen immobilization and mineralization. Soil Biol. Biochem. 5, 825–840 (1973).  https://doi.org/10.1016/0038-0717(73)90028-X CrossRefGoogle Scholar
  38. 38.
    Vasala, A., Panula, J., Neubauer, P.: Efficient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. J. Biotechnol. 117, 421–431 (2005).  https://doi.org/10.1016/j.jbiotec.2005.02.010 CrossRefGoogle Scholar
  39. 39.
    Fitzpatrick, J.J., O’Keeffe, U.: Influence of whey protein hydrolysate addition to whey permeate batch fermentations for producing lactic acid. Process Biochem. 37, 183–186 (2001).  https://doi.org/10.1016/S0032-9592(01)00203-5 CrossRefGoogle Scholar
  40. 40.
    Kadam, S.R., Patil, S.S., Bastawde, K.B., Khire, J.M., Gokhale, D.V.: Strain improvement of Lactobacillus delbrueckii NCIM 2365 for lactic acid production. Process Biochem. 41, 120–126 (2006).  https://doi.org/10.1016/J.PROCBIO.2005.06.007 CrossRefGoogle Scholar
  41. 41.
    Schepers, A.W., Thibault, J., Lacroix, C.: Continuous lactic acid production in whey permeate/yeast extract medium with immobilized Lactobacillus helveticus in a two-stage process: model and experiments. Enzyme Microb. Technol. 38, 324–337 (2006).  https://doi.org/10.1016/j.enzmictec.2004.07.028 CrossRefGoogle Scholar
  42. 42.
    Sun, X., Wang, Q., Zhao, W., Ma, H., Sakata, K.: Extraction and purification of lactic acid from fermentation broth by esterification and hydrolysis method. Sep. Purif. Technol. 49, 43–48 (2006).  https://doi.org/10.1016/j.seppur.2005.08.005 CrossRefGoogle Scholar
  43. 43.
    Khunnonkwao, P., Boontawan, P., Haltrich, D., Maischberger, T., Boontawan, A.: Purification of l-(+)-lactic acid from pre-treated fermentation broth using vapor permeation-assisted esterification. Process Biochem. 47, 1948–1956 (2012).  https://doi.org/10.1016/j.procbio.2012.07.011 CrossRefGoogle Scholar
  44. 44.
    Saddoud, A., Hassaïri, I., Sayadi, S.: Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour. Technol. 98, 2102–2108 (2007).  https://doi.org/10.1016/j.biortech.2006.08.013 CrossRefGoogle Scholar
  45. 45.
    de Souza, R., Ambrosini, A., Passaglia, L.M.P.: Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38, 401–419 (2015).  https://doi.org/10.1590/S1415-475738420150053 CrossRefGoogle Scholar
  46. 46.
    Todorov, S.D., Dicks, L.M.T.: Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: comparison of the bacteriocins. Process Biochem. 41, 11–19 (2006).  https://doi.org/10.1016/j.procbio.2005.01.026 CrossRefGoogle Scholar
  47. 47.
    Dimitrijević, R., Stojanović, M., Živković, I., Petersen, A., Jankov, R.M., Dimitrijević, L., Gavrović-Jankulović, M.: The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol. 107, 2108–2115 (2009)CrossRefGoogle Scholar
  48. 48.
    Bueno, D.J., Silva, J.O., Oliver, G., GonzáLez, S.N.: Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224 as biological controls for Aspergillus flavus strains. J. Food Prot. 69, 2544–2566 (2006)CrossRefGoogle Scholar
  49. 49.
    Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., Rouphael, Y.: Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. (Amsterdam). 196, 28–38 (2015).  https://doi.org/10.1016/j.scienta.2015.08.037 CrossRefGoogle Scholar
  50. 50.
    Parrado, J., Bautista, J., Romero, E.J., García-Martínez, A.M., Friaza, V., Tejada, M.: Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresour. Technol. 99, 2312–2318 (2008).  https://doi.org/10.1016/j.biortech.2007.05.029 CrossRefGoogle Scholar
  51. 51.
    Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M., Sánchez-Andreu, J.J.: Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 830, 481–488 (2009).  https://doi.org/10.17660/ActaHortic.2009.830.68 CrossRefGoogle Scholar
  52. 52.
    Ashmead, H.D., Ashmead, H.H., Miller, G.W., Hsu, H.H.: Foliar feeding of plants with amino acid chelates. (1986). http://agris.fao.org/agris-search/search.do?recordID=XF2015033080
  53. 53.
    Ertani, A., Schiavon, M., Muscolo, A., Nardi, S.: Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 364, 145–158 (2013).  https://doi.org/10.1007/s11104-012-1335-z CrossRefGoogle Scholar
  54. 54.
    Nannipieri, P., Grego, S., Ceccanti, B.: Ecological significance of the biological activity in soil. Soil Biochem. 6, 293–355Google Scholar
  55. 55.
    Hansel, C.M., Fendorf, S., Jardine, P.M., Francis, C.A.: Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microbiol. 74, 1620–1633 (2008).  https://doi.org/10.1128/AEM.01787-07 CrossRefGoogle Scholar
  56. 56.
    Beller, H.R., Han, R., Karaoz, U., Lim, H., Brodie, E.L.: Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute Pelosinus sp. strain HCF1. Appl. Environ. Microbiol. 79, 63–73 (2013).  https://doi.org/10.1128/AEM.02496-12 CrossRefGoogle Scholar
  57. 57.
    Mosher, J.J., Phelps, T.J., Podar, M., Hurt, R.A., Campbell, J.H., Drake, M.M., Moberly, J.G., Schadt, C.W., Brown, S.D., Hazen, T.C., Arkin, A.P., Palumbo, A.V., Faybishenko, B.A., Elias, D.A.: Microbial community succession during lactate amendment and electron acceptor limitation reveals a predominance of metal-reducing Pelosinus spp. Appl. Environ. Microbiol. 78, 2082–2091 (2012).  https://doi.org/10.1128/AEM.07165-11 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversidad de SevillaSevillaSpain
  2. 2.Department of Crystallography, Mineralogy and Agricultural Chemistry, E.U.I.T.AUniversidad de SevillaSevillaSpain

Personalised recommendations