Catalytic Upgrading of Pyrolytic Oil via In-situ Hydrodeoxygenation
- 4 Downloads
Abstract
Lignocellulosic biomass derived from non-food crops cultivated on lands that are increasingly marginal for more favoured major crops is a potential source of sustainable renewable energy. This study explores the transformation of crude organic phase pyrolytic oil derived from Napier grass biomass into high-grade biofuel precursors via hydrodeoxygenation reaction over platinum and palladium catalysts with in-situ hydrogen generation from methanol. The reaction was conducted in a high-pressure stainless steel batch reactor at 350 °C, 20 wt% methanol ratio, 2 wt% catalyst loading and 60 min reaction time. The result of physicochemical analysis showed that the higher heating value of the organic liquid products collected over the catalysts increased by 35–40% relative to the raw sample. Gas chromatography-mass spectrometry results revealed significant reductions in the oxygenated compounds such as methoxyaromatics, methoxyphenols, acids, aldehydes. The degree of deoxygenation and overall extent of upgrading observed was 50–54% and 56–60%, respectively. The gas products collected were mainly carbon monoxide, carbon dioxide, hydrogen and methane. Hydrodeoxygenation, hydrogenolysis, hydrogenation, dehydration, demethylation, hydrocracking, decarbonylation and decarboxylation were the main upgrading reactions, and a multiple reaction network was proposed.
Keywords
Napier grass Pyrolytic oil Deoxygenation Reaction pathways Pd/C Pt/CNotes
Acknowledgements
This work was supported by the Energy for Life /EPSRC Global Challenges Research Fund (Project No: RIS 355037(UK) and IAE M0001 (UNMC) 2017/18). Authors also acknowledge the support from Crops for the Future (CFF), EcoKnights Malaysia and the University of Nottingham.
Supplementary material
References
- 1.Mohammed, I.Y.: Abakr, Y.A.: Kazi, F.K.: Yusup, S.: Alshareef, I.: Chin, S.A.: Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)CrossRefGoogle Scholar
- 2.Mohammed, I.Y.: Abakr, Y.A.: Yusup, S.: Kazi, F.K.: Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. J. Clean. Prod. 142, 1848–1866 (2017)CrossRefGoogle Scholar
- 3.Perkins, G.: Bhaskar, T.: Konarova, M.: Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew. Sustain. Energy Rev. 90, 292–315 (2018)CrossRefGoogle Scholar
- 4.Strezov, V., Evans, T.J., Hayman, C.: Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 99, 8394–8399 (2008)CrossRefGoogle Scholar
- 5.Lee, M.-K., Tsai, W.-T., Tsaic, Y.-L., Lin, S.-H.: Pyrolysis of Napier grass in an induction-heating reactor. J. Anal. Appl. Pyrol. 88, 110–116 (2010)CrossRefGoogle Scholar
- 6.Suntivarakorn, R.: Treedet, W.: Singbua, P.: Teeramaetawat, N.: Fast pyrolysis from Napier grass for pyrolysis oil production by using circulating Fluidized Bed Reactor: Improvement of pyrolysis system and production cost. Energy Rep. 4, 565–575 (2018)CrossRefGoogle Scholar
- 7.Mohammed, I.Y.: Abakr, Y.A.: Yusup, S.: Alaba, P.A.: Morris, K.I.: Sani, Y.M.: Kazi, F.K.: Upgrading of Napier grass pyrolytic oil using microporous and hierarchical mesoporous zeolites: Products distribution, composition and reaction pathways. J. Clean. Prod. 162, 817–829 (2017)CrossRefGoogle Scholar
- 8.Mohammed, I.Y.: Pyrolysis of Napier grass to bio-oil and catalytic upgrading to high grade bio-fuel (Doctoral dissertation, University of Nottingham, (2017)Google Scholar
- 9.Ahmadi, A.: Yuan, Z.: Rohani, S.: Xu, C.: Effects of nano-structured CoMo catalysts on hydrodeoxygenation of fast pyrolysis oil in supercritical ethanol. Catal. Today 269, 182–194 (2016)CrossRefGoogle Scholar
- 10.Mortensen, P.M.: Grunwaldt, J.D.: Jensen, P.A.: Jensen, A.D.: Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2. Catal. Today 259(Part 2), 277–284 (2016)CrossRefGoogle Scholar
- 11.Patel, M.: Kumar, A.: Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renew. Sustain. Energy Rev. 58, 1293–1307 (2016)MathSciNetCrossRefGoogle Scholar
- 12.Widayatno, W.B.: Guan, G.: Rizkiana, J.: Yang, J.: Hao, X.: Tsutsumi, A.: Abudula, A.: Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl. Catal. B 186, 166–172 (2016)CrossRefGoogle Scholar
- 13.Tan, Z.: Xu, X.: Liu, Y.: Zhang, C.: Zhai, Y.: Liu, P.: Li, Y.: Zhang, R.: Upgrading bio-oil model compounds phenol and furfural with in situ generated hydrogen. Environ. Prog. Sustain. Energy 33(3), 751–755 (2014)CrossRefGoogle Scholar
- 14.Feng, J.: Hse, C.Y.: Yang, Z.: Wang, K.: Jiang, J.: Xu, J.: Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Appl. Catal. A 542, 163–173 (2017)CrossRefGoogle Scholar
- 15.Xu, Y.: Li, Y.: Wang, C.: Wang, C.: Ma, L.: Wang, T.: Zhang, X.: Zhang, Q.: In-situ hydrogenation of model compounds and raw bio-oil over Ni/CMK-3 catalyst. Fuel Process. Technol. 161, 226–231 (2017)CrossRefGoogle Scholar
- 16.Cheng, S.: Wei, L.: Alsowij, M.R.: Corbin, F.: Julson, J.: Boakye, E.: Raynie, D.: In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. J. Energy Inst. 91, 163–171 (2018)CrossRefGoogle Scholar
- 17.Sing, K.S.: Williams, R.T.: Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22(10), 773–782 (2004)CrossRefGoogle Scholar
- 18.Ruiz-García, C.: Heras, F.: Alonso-Morales, N.: Calvo, L.: Rodriguez, J.J.: Gilarranz, M.A.: Enhancement of the activity of Pd/C catalysts in aqueous phase hydrodechlorination through doping of carbon supports. Catal. Sci. Technol. 8, 2598–2605 (2018)CrossRefGoogle Scholar
- 19.Wei, Q.: Ma, Q.: Zuo, P.: Fan, H.: Qu, S.: Shen, W.: Hollow structure and electron promotion effect of mesoporous Pd/CeO2 catalyst for enhanced catalytic hydrogenation. ChemCatChem 10(5), 1019–1026 (2018)CrossRefGoogle Scholar
- 20.Gonzalez, G.: Sagarzazu, A.: Cordova, A.: Gomes, M.E.: Salas, J.: Contreras, L.: Noris-Suarez, K.: Lascano, L.: Comparative study of two silica mesoporous materials (SBA-16 and SBA-15) modified with a hydroxyapatite layer for clindamycin controlled delivery. Microporous Mesoporous Mater. 256, 251–265 (2018)CrossRefGoogle Scholar
- 21.Bai, Z.: Liu, Q.: Lei, J.: Jin, H.: Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition. Appl. Energy 217, 56–65 (2018)CrossRefGoogle Scholar
- 22.Wang, C.: Luo, J.: Liao, V.: Lee, J.D.: Onn, T.M.: Murray, C.B.: A comparison of furfural hydrodeoxygenation over Pt-Co and Ni-Fe catalysts at high and low H2 pressures. Catal. Today 302, 73–79 (2018)CrossRefGoogle Scholar
- 23.Elkasabi, Y.: Mullen, C.A.: Pighinelli, A.L.: Boateng, A.A.: Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Process. Technol. 123, 11–18 (2014)CrossRefGoogle Scholar
- 24.Volkov, A.: Gustafson, K.P.: Tai, C.W.: Verho, O.: Bäckvall, J.E.: Adolfsson, H.: Mild deoxygenation of aromatic ketones and aldehydes over Pd/C using polymethylhydrosiloxane as the reducing agent. Angew. Chem. Int. Ed. 54(17), 5122–5126 (2015)CrossRefGoogle Scholar
- 25.Rodríguez-Gattorno, G.: Alemán-Vázquez, L.O.: Angeles-Franco, X.: Cano-Domínguez, J.L.: Villagómez-Ibarra, R.: Cyclohexane ring opening on alumina-supported Rh and Ir nanoparticles. Energy Fuels 21(2), 1122–1126 (2007)CrossRefGoogle Scholar
- 26.Goti, A.: Cordero, F.M.: Brandi, A.: Cycloadditions onto methylene-and alkylidenecyclopropane derivatives. In: Small ring compounds in organic synthesis, pp. 1–97. Berlin, Springer (1996)Google Scholar
- 27.Keil, F.J.: Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29(1–2), 49–66 (1999)CrossRefGoogle Scholar
- 28.Tyagi, A.: Matsumoto, T.: Kato, T.: Yoshida, H.: Direct C–H bond activation of ethers and successive C–C bond formation with benzene by a bifunctional palladium–titania photocatalyst. Catal. Sci. Technol. 6(12), 4577–4583 (2016)CrossRefGoogle Scholar
- 29.Xu, Y.: Long, J.: Liu, Q.: Li, Y.: Wang, C.: Zhang, Q.: Lv, W.: Zhang, X.: Qiu, S.: Wang, T.: and Ma, L.: In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Convers. Manag. 89, 188–196 (2015)CrossRefGoogle Scholar