Advertisement

Biohydrogen Production From Beverage Wastewater Using Selectively Enriched Mixed Culture

  • Periyasamy SivagurunathanEmail author
  • Chiu-Yue Lin
Original Paper
  • 23 Downloads

Abstract

In order to select the efficient hydrogen-producers for beverage wastewater (BW), initially sucrose was chosen as a sole carbon source to enrich efficient hydrogen-producers from two different compost seeds. The enriched mixed culture (EMC) obtained from the compost of food waste (C1) provided a hydrogen yield (HY) and hydrogen production rate (HPR) of 3.76 mol/mol sucrose and 1.15 L/L-d, respectively. The EMC (C1) was further used for optimization of pH, temperature and substrate concentration from BW and showed the optimal conditions of pH 5.5, temperature 37 °C and a substrate concentration of 20 g/L, respectively. Under these conditions, the optimal HPR and HY were observed as 2.16 L/L-d and 1.30 mol/mol hexoseutilized. Ratkowsky kinetic model analysis provided the optimal temperature value of 38.5 °C. While, Monod model was used to predict the substrate concentration effects and it showed the Rm and Ks values as 3.57 L/L-d and 8.29 g/L, respectively.

Keywords

Enriched mixed culture Beverage industry wastewater Hydrogen Culture optimization Bioprocess Kinetic model 

Abbreviations

BW

Beverage wastewater (BW)

COD

Chemical oxygen demand

CHP

Cumulative hydrogen production

DF

Dark fermentation

EMC

Enriched mixed culture

HY

Hydrogen yield

HPR

Hydrogen production rate

SMP

Soluble metabolic products

Notes

References

  1. 1.
    Budiman, P.M., Wu, T.Y.: Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Convers. Manag. 165, 509–527 (2018)CrossRefGoogle Scholar
  2. 2.
    Demirbas, A.: Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33, 1–18 (2007)CrossRefGoogle Scholar
  3. 3.
    Lin, C.Y., Lay, C.H., Sen, B., Chu, C.Y., Kumar, G., Chen, C.C., Chang, J.S.: Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrog. Energy. 37, 15632–15642 (2012)CrossRefGoogle Scholar
  4. 4.
    Kumar, G., Lin, C.Y.: Bioconversion of de-oiled Jatropha Waste (DJW) to hydrogen and methane gas by anaerobic fermentation: Influence of substrate concentration, temperature and pH. Int. J. Hydrog. Energy. 38, 63–72 (2013)CrossRefGoogle Scholar
  5. 5.
    Lorencini, P., Siqueira, M.R., Maniglia, B.C., Tapia, D.R., Maintinguer, S.I., Reginatto, V.: Biohydrogen production from liquid and solid fractions of sugarcane bagasse after optimized pretreatment with hydrochloric acid. Waste Biomass. Valoriz. 7, 1017–1029 (2016)CrossRefGoogle Scholar
  6. 6.
    Argun, H., Dao, S.: Hydrogen gas production from waste peach pulp by natural microflora. Waste. Biomass. Valoriz.  https://doi.org/10.1007/s12649-017-9990-1 (2017)Google Scholar
  7. 7.
    Sekoai, P.T., Ayeni, A.O., Daramola, M.O.: Parametric optimization of biohydrogen production from potato waste and scale-up study using immobilized anaerobic mixed sludge. Waste Biomass. Valoriz.  https://doi.org/10.1007/s12649-017-0136-2 (2017)Google Scholar
  8. 8.
    Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrog. Energy. 27, 1339–1347 (2002)CrossRefGoogle Scholar
  9. 9.
    Valdez-Vazquez, I., Poggi-Varaldo, H.M.: Hydrogen production by fermentative consortia. Renew. Sustain. Energy. Rev. 13, 1000–1013 (2009)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: A review. Int. J. Hydrog. Energy. 34, 799–811 (2009)CrossRefGoogle Scholar
  11. 11.
    Fan, Y., Li, C., Lay, J.J., Hou, H., Zhang, G.: Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresour. Technol. 91, 189–193 (2004)CrossRefGoogle Scholar
  12. 12.
    Ren, N.Q., Xu, J.F., Gao, L.F., Xin, L., Qiu, J., Su, D.X.: Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrog. Energy. 35, 2742–2746 (2010)CrossRefGoogle Scholar
  13. 13.
    Ueno, Y., Otsuka, S., Morimoto, M.: Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82, 194–197 (1996)CrossRefGoogle Scholar
  14. 14.
    Mäkinen, A.E., Nissilä, M.E., Puhakka, J.A.: Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int. J. Hydrog. Energy. 37, 12234–12240 (2012)CrossRefGoogle Scholar
  15. 15.
    Sivagurunathan, P., Lin, C.Y.: Enhanced biohydrogen production from beverage wastewater: process performance during various hydraulic retention times and their microbial insights. RSC Adv. 6, 4160–4169 (2016)CrossRefGoogle Scholar
  16. 16.
    Sivagurunathan, P., Sen, B., Lin, C.Y.: Batch fermentative hydrogen production by enriched mixed culture: combination strategy and their microbial composition. J. Biosci. Bioeng. 117, 222–228 (2014)CrossRefGoogle Scholar
  17. 17.
    Endo, G., Noike, T., Matsumoto, T.: Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc.Civ. Eng. 325, 61–68 (1982)CrossRefGoogle Scholar
  18. 18.
    Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875–1881 (1990)Google Scholar
  19. 19.
    Ratkowsky, D.A., Lowry, R.K., McMeekin, T.A., Stokes, A.N., Chandler, R.E.: Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J. Bacteriol. 154, 1222–1226 (1983)Google Scholar
  20. 20.
    Kumar, G., Lay, C.H., Chu, C.Y., Wu, J.H., Lee, S.C., Lin, C.Y.: Seed inocula for biohydrogen production from biodiesel solid residues. Int. J. Hydrog. Energy. 37, 15489–15495 (2012)CrossRefGoogle Scholar
  21. 21.
    Akutsu, Y., Lee, D.Y., Li, Y.Y., Noike, T.: Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrog. Energy. 34, 5365–5372 (2009)CrossRefGoogle Scholar
  22. 22.
    Tang, G.-L., Huang, J., Sun, Z.-J., Tang, Q.Q., Yan, C.H., Liu, G.Q.: Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J. Biosci. Bioeng. 106, 80–87 (2008)CrossRefGoogle Scholar
  23. 23.
    Stavropoulos, K.P., Kopsahelis, A., Zafiri, C., Kornaros, M.: Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valoriz. 7, 753–764 (2016)CrossRefGoogle Scholar
  24. 24.
    Sen, B., Suttar, R.R.: Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures. Int. J. Hydrog. Energy. 37, 15588–15597 (2012)CrossRefGoogle Scholar
  25. 25.
    Mu, Y., Zheng, X.J., Yu, H.Q., Zhu, R.F.: Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrog. Energy. 31, 780–785 (2006)CrossRefGoogle Scholar
  26. 26.
    Argun, H., Dao, S.: Bio-hydrogen production from waste peach pulp by dark fermentation: Effect of inoculum addition. Int. J. Hydrog. Energy. 42, 2569–2574 (2017)CrossRefGoogle Scholar
  27. 27.
    Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015)CrossRefGoogle Scholar
  28. 28.
    Shi, X.Y., Jin, D.W., Sun, Q.Y., Li, W.W.: Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach. Renew. Energy. 35, 1493–1498 (2010)CrossRefGoogle Scholar
  29. 29.
    Wu, J.H., Lin, C.Y.: Biohydrogen production by mesophilic fermentation of food wastewater. Wat. Sci. Technol. 49, 223–228 (2004)CrossRefGoogle Scholar
  30. 30.
    Hay, J.X.W., Wu, T.Y., Juan, J.C., Jahim, J.M.: Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ. Sci. Pollut. Res. 24(11), 10354–10363 (2017)CrossRefGoogle Scholar
  31. 31.
    Amorim, N.C.S., Amorim, E.L.C., Kato, M.T., Florencio, L., Gavazza, S.: The effect of methanogenesis inhibition, inoculum and substrate concentration on hydrogen and carboxylic acids production from cassava wastewater. Biodegradation 29, 41–58 (2018)CrossRefGoogle Scholar
  32. 32.
    Islam, M.S., Guo, C., Liu, C.Z.: Enhanced hydrogen and volatile fatty acid production from sweet sorghum stalks by two-steps dark fermentation with dilute acid treatment in between. Int. J. Hydrog. Energy. 43, 659–666 (2018)CrossRefGoogle Scholar
  33. 33.
    Sivagurunathan, P., Kumar, G., Lin, C.Y.: Hydrogen and ethanol fermentation of various carbon sources by immobilized Escherichia coli (XL1-Blue). Int. J. Hydrog. Energy. 39, 6881–6888 (2014)CrossRefGoogle Scholar
  34. 34.
    Lee, H.S., Salerno, M.B., Rittmann, B.E.: Thermodynamic evaluation on H2 production in glucose fermentation. Environ. Sci. Technol. 42, 2401–2407 (2008)CrossRefGoogle Scholar
  35. 35.
    Chu, C.Y., Tung, L., Lin, C.Y.: Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. Int. J. Hydrog. Energy. 38, 15849–15855 (2013)CrossRefGoogle Scholar
  36. 36.
    Chen, W.H., Chen, S.Y., Kumar Khanal, S., Sung, S.: Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrog. Energy 31, 2170–2178 (2006)CrossRefGoogle Scholar
  37. 37.
    Hsiao, C.L., Chang, J.J., Wu, J.H., Chin, W.C., Wen, F.S., Huang, C.C., Chen, C.C., Lin, C.Y.: Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int. J. Hydrog. Energy. 34, 7173–7181 (2009)CrossRefGoogle Scholar
  38. 38.
    Cappelletti, B.M., Reginatto, V., Amante, E.R., Antônio, R.V.: Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew. Energy 36, 3367–3372 (2011)CrossRefGoogle Scholar
  39. 39.
    Khamtiba, S., Plangklanga, P., Reungsang, A.: Optimization of fermentative hydrogen production from hydrolysate of microwave assisted sulfuric acid pretreated oil palm trunk by hot spring enriched culture. Int. J. Hydrog. Energy. 36, 14204–14216 (2011)CrossRefGoogle Scholar
  40. 40.
    Wicher, E., Seifert, K., Zagrodnik, R., Pietrzyk, B., Laniecki, M.: Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrog. Energy 38(1), 7767–7773 (2013)CrossRefGoogle Scholar
  41. 41.
    Sivagurunathan, P., Kumar, G., Lin, C.Y.: Enhancement of fermentative hydrogen production from beverage wastewater via bioaugmentation and statistical optimization. Curr. Biochem. Eng. 1, 92–98 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Green Energy Technology Research GroupTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Environment and Labour SafetyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Environmental Engineering and ScienceFeng Chia UniversityTaichungTaiwan, Republic of China

Personalised recommendations