Choline Based Basic Ionic Liquid (BIL)/Acidic DES Mediated Cellulose Rich Fractionation of Agricultural Waste Biomass and Valorization to 5-HMF

  • Shalini Arora
  • Neeraj GuptaEmail author
  • Vasundhara SinghEmail author
Original Paper


The present work demonstrates the efficient alkaline pre-treatment method to obtain a cellulose rich fraction from agricultural waste biomass using low cost and biocompatible aqueous choline hydroxide [Ch]OH, a basic ionic liquid (BIL) and the conversion of isolated cellulose into 5-(hydroxymethyl) furfural, catalyzed by various homogeneous acidic deep eutectic solvents (DES).

Graphical Abstract

(a) Low cost, mild biodegradable choline hydroxide (basic ionic liquid). (b) White cellulose fibers without bleaching process. (c) Recyclable and recoverable catalysts. And (d) High yield and purity of 5-HMF.


Agriculture waste Choline hydroxide Choline chloride/p-TSA Choline chloride/oxalic acid Choline chloride/citric acid Cellulose 5-HMF 



The authors are thankful Punjab engineering college (Deemed to be University), Chandigarh for necessary facility and SAIF-CIL Punjab University, Chandigarh for spectroscopic analysis.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

12649_2019_603_MOESM1_ESM.docx (136 kb)
Supplementary material 1 Experimental procedures for extraction of cellulose, hemi-cellulose, lignin, synthesis of HMF from cellulose, comparison table for 5-HMF.Characterization details of all isolated lignocellulosic components and 5-HMF, etc. (DOCX 135 KB)


  1. 1.
    Donate, P.M.: Green synthesis from biomass. Chem. Biol. Technol. Agric. (2014)Google Scholar
  2. 2.
    Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4, 1–19 (2017)CrossRefGoogle Scholar
  3. 3.
    Dutta, S., Bhaumik, A., Wu, K.C.W.: Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. (2014)Google Scholar
  4. 4.
    Dutta, S., Wu, K.C.W.: Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem. (2014)Google Scholar
  5. 5.
    Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pre-treatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. (2015)Google Scholar
  6. 6.
    Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., Ramakrishnan, S.: Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 1–17. (2011)
  7. 7.
    Guimond, R., Chabot, B., Law, K.N., Daneauld, C.: The use of cellulose nanofibres in paper making. J. Pulp Paper Sci. 36, 55–61 (2010)Google Scholar
  8. 8.
    Dutta, S., Wu, K.C.W., Saha, B.: Emerging strategies of breaking 3D amorphous network of lignin. Catal. Sci. Technol. 4, 3785–3799 (2014)CrossRefGoogle Scholar
  9. 9.
    Tianjiao, Q.T., Zhang, X., Gu, X., Han, H., Ji, G., Chen, X., Xiao, W.: Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions. ACS Sustain. Chem. Eng. 5, 7733–7742 (2017)CrossRefGoogle Scholar
  10. 10.
    Karp, E.M., Resch, M.G., Donohoe, B.S., Ciesielski, P.N., O’Brien, M.H., Nill, J.E., Mittal, A., Biddy, M.J., Beckham, G.T.: Alkaline pretreatment of switch grass. ACS Sustain. Chem. Eng. 3, 1479–1491 (2015)CrossRefGoogle Scholar
  11. 11.
    Costa Lopes, A.M., Joao, K.G., Morais, A.R.C., Lukasik, E.B., Lukasik, R.B.: Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process. 1, 1–31 (2013)CrossRefGoogle Scholar
  12. 12.
    Hou, Q., Ju, M., Li, W., Liu, L., Chen, Y., Yang, Q.: Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules. 22, 490 (2017)CrossRefGoogle Scholar
  13. 13.
    Peleteiro, S., Rivas, S., Alonso, J.L., Santos, V., Parajo, J.C.: Utilization of ionic liquids in lignocellulose biorefineries as agents for separation, derivatization, fractionation or pretreatment. J. Agric. Food Chem. (2015)Google Scholar
  14. 14.
    Costa Lopes, A.M., Lukasik, R.B.: Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem. (2015)Google Scholar
  15. 15.
    Rashida, T., Kait, C.F., Regupathi, I., Murugesan, T.: Dissolution of kraft lignin using protic ionic liquids and characterization. Ind. Crops Prod. 84, 284–293 (2016)CrossRefGoogle Scholar
  16. 16.
    Sochaa, A.M., Parthasarathia, R., Jian, S., Pattathile, S.K., Whytea, D., Bergerona, M., Georgea, A., Trana, K., Stavilad, V., Venkatachalame, S., Hahne, M.G., Simmonsa, B.A., Singh, S.: Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. PNAS. 3587–3595. (2014)
  17. 17.
    Matsagar, B.M., Hossain, S.A., Islam, T., Alamri, H.R., Alothman, Z.A., Yamauchi, Y., Dhepe, P.L., Wu, K.C.W.: Direct production of furfural in one-pot fashion from raw biomass using Brønsted acidic ionic liquids. Sci. Rep. (2017)Google Scholar
  18. 18.
    Ninomiya, K., Inoue, K., Aomori, Y., Ohnishi, A., Ogino, C., Shimizu, N., Takahashi, K.: Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem. Eng. J. 259, 323–329 (2015)CrossRefGoogle Scholar
  19. 19.
    Ren, H., Zong, M.H., Wu, H., Li, N.: Efficient pretreatment of wheat straw using novel renewable cholinium ionic liquids to improve enzymatic saccharification. Ind. Eng. Chem. Res. (2016)Google Scholar
  20. 20.
    Ninomiya, K., Yamauchi, T., Kobayashi, M., Ogino, C., Shimizua, N., Takahashi, K.: Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem. Eng. J. 71, 25–29 (2013)CrossRefGoogle Scholar
  21. 21.
    Hou, X.D., Smith, T.J., Li, N., Zong, M.H.: Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol. Bioeng. (2012)Google Scholar
  22. 22.
    Liu, Z., Li, L., Liu, C., Xu, A.: Pretreatment of corn straw using the alkaline solution of ionic liquids. Bioresour. Technol. (2018)Google Scholar
  23. 23.
    Silva, S.P.M., Costa Lopes, A.M., Roseiroa, L.B., Lukasik, R.B.: Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids. RSC Adv. 3, 16040–16050 (2013)CrossRefGoogle Scholar
  24. 24.
    Lau, B.B.Y., Yeung, T., Patterson, R.J., Aldous, L.: A cation study on rice husk biomass pretreatment with aqueous hydroxides: cellulose solubility does not correlate with improved enzymatic hydrolysis. ACS Sustain. Chem. Eng. 5, 5320–5329 (2017)CrossRefGoogle Scholar
  25. 25.
    Yang, C.Y., Fang, T.J.: Kinetics of enzymatic hydrolysis of rice straw by the pretreatment with a bio-based basic ionic liquid under ultrasound. Process Biochem. (2015)Google Scholar
  26. 26.
    Jeong, G.T., Ra, C.H., Hong, Y.K., Kim, J.K., Kong, I.S., Kim, S.K., Park, D.H.: Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess. Biosyst. Eng. 38, 207–217 (2015)CrossRefGoogle Scholar
  27. 27.
    Fukuoka, A., Dhepe, P.L.: Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed. 45, 5161 – 5163 (2006)CrossRefGoogle Scholar
  28. 28.
    Santos, D., Silva, U.F., Duarte, F.A., Bizzi, C.A., Flores, E.M.M., Mello, P.A.: Ultrasound-assisted acid hydrolysis of cellulose to chemical building blocks: application to furfural synthesis. Ultrason. Sonochem. (2017)Google Scholar
  29. 29.
    Nandiwale, K.Y., Galande, N.D., Thakur, P., Sawant, S.D., Zambre, V.P., Bokade, V.V.: One-pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustain. Chem. Eng. 2, 1928–1932 (2014)CrossRefGoogle Scholar
  30. 30.
    Zhou, L., Liang, R., Ma, Z., Wu, T., Wu, Y.: Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol. 129, 450–455 (2013)CrossRefGoogle Scholar
  31. 31.
    Kim, B., Jeong, J., Lee, D., Kim, S., Yoon, H.J., Lee, Y.S., Cho, J.K.: Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chem. 13, 1503 (2011)CrossRefGoogle Scholar
  32. 32.
    Tang, X., Zuo, M., Li, Z., Liu, H., Xiong, C., Zeng, X., Sun, Y., Hu, L., Liu, S., Lei, T., Lin, L.: Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents. ChemSusChem. 10, 2696–2706 (2017)CrossRefGoogle Scholar
  33. 33.
    Lee, Y.C., Dutta, S., Wu, K.C.W.: Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. ChemSusChem. 7, 3241–3246 (2014)CrossRefGoogle Scholar
  34. 34.
    Lee, Y.C., Chen, T.C., Chiu, Y.T., Wu, K.C.W.: An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem. 5, 2153–2157 (2013)CrossRefGoogle Scholar
  35. 35.
    Alama, M.I., Dea, S., Singh, B., Saha, B., Abu-Omarb, M.M.: Titanium hydrogenphosphate: an efficient dual acidic catalyst for 5-hydroxymethylfurfural (HMF) production. Appl. Catal. A 486, 42–48 (2014)CrossRefGoogle Scholar
  36. 36.
    Kuo, I.J., Suzuki, N., Yamauchi, Y., Wu, K.C.W.: Cellulose-to-HMF conversion using crystalline mesoporous titania and zirconia nanocatalysts in ionic liquid systems. RSC Adv. 3, 2028–2034 (2013)CrossRefGoogle Scholar
  37. 37.
    Hsu, W.H., Lee, Y.Y., Peng, W.H., Wu, K.C.W.: Cellulosic conversion in ionic liquids (ILs): effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal. Today 174, 65–69 (2011)CrossRefGoogle Scholar
  38. 38.
    Sert, M., Aslanoglu, A., Ballice, L.: Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents. Renew. Energy. (2017)Google Scholar
  39. 39.
    Li, X.C., Peng, K., Xia, Q., Liu, X., Wang, Y.: Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites. Chem. Eng. J. (2017)Google Scholar
  40. 40.
    Yan, L., Zhao, Y., Gu, Q., Li, W.: Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. Front. Chem. Sci. Eng. 6, 282–291 (2012)CrossRefGoogle Scholar
  41. 41.
    Assanosi, A.A., Farah, M.M., Wood, J., Duri, B.A.: A facile acidic choline chloride–p-TSA DES-catalyzed dehydration of fructose to 5-hydroxymethlfurfural. RSC Adv. 4, 39359–39364 (2014)CrossRefGoogle Scholar
  42. 42.
    Workman, J., Weyer, L.: Practical guide to interpretive near infrared spectroscopy, CRC Press, Boca Raton. (2008)Google Scholar
  43. 43.
    Osborne, B.G.: Near infrared spectroscopy in food analysis, encyclopedia of analytical chemistry. Willey, New York (2006)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied Sciences (Chemistry)Punjab Engineering College (Deemed to be University)ChandigarhIndia
  2. 2.School of Chemistry, Faculty of Basic SciencesShoolini UniversitySolanIndia

Personalised recommendations