Advertisement

Conversion of Biomass-Derived Furanics to Fuel-Range Hydrocarbons: Use of Palm Oil Empty Fruit Bunches

  • Natalia Pino
  • Robison Buitrago-Sierra
  • Diana LópezEmail author
Original Paper
  • 11 Downloads

Abstract

In the search of hydrocarbon fuels derived from biomass, the increase in the chain length with the elimination of oxygenated species is a hard task. The simultaneous conversion of furfural and cyclopentanone to fuel range hydrocarbons has been investigated on a series of solid base catalysts. Furfural represents the family of sugars, typically obtained from the hemicellulose biomass fraction by different catalytic routes. Cyclopentanone can be readily obtained from the catalytic conversion of furfural via Piancatelli ring-rearrangement under reducing conditions. Aimed to enlarge the carbon chain length of these oxygenates, the aldol-condensation reaction between furfural and cyclopenanone was studied over MgAl mixed oxides, among which the MgAl-3 mixed oxide exhibited the best catalytic activity to produce C10–C14 oxygenates, a suitable range for transportation fuel precursors (C7–C15). After this C–C coupling reaction, the large oxygenates were successfully upgraded via hydrodeoxygenation on carbon-supported Ru and Pd nanoparticles to produce a mixture of linear alkanes and saturated cyclic hydrocarbons, which in practice would be direct drop-in components for transportation fuels. As an illustration of the potential implementation of this strategy for biofuel production, palm oil empty fruit bunches were experimentally evaluated using different acid pretreatments to extract the furfural, which was further employed to perform the aldol-condensation reactions. It was found that the proposed catalytic strategy is an environmentally-friendly route to add value to the palm oil industry wastes by producing value-added chemicals and fuel precursors.

Graphical Abstract

Keywords

Empty fruit bunches Furfural Cyclopentanone Aldol-condensation Hydrodeoxygenation Fuel precursors 

Notes

Acknowledgements

The authors thank the project “Sustainable products from biomass” financed by Newton Institutional Link Funds, Colciencias, and Universidad de Antioquia UdeA (FP44842-241-2017). Natalia Pino gratefully acknowledges to the Universidad de Antioquia for her Doctoral scholarship.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

12649_2019_599_MOESM1_ESM.docx (264 kb)
Supplementary material 1 (DOCX 264 KB)

References

  1. 1.
    Li, X., Jia, P., Wang, T.: Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 6, 7621–7640 (2016).  https://doi.org/10.1021/acscatal.6b01838 CrossRefGoogle Scholar
  2. 2.
    Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., López Granados, M.: Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9, 1144–1189 (2016).  https://doi.org/10.1039/c5ee02666k CrossRefGoogle Scholar
  3. 3.
    Guo, J., Xu, G., Han, Z., Zhang, Y., Fu, Y., Guo, Q.: Selective conversion of furfural to cyclopentanone with CuZnAl catalysts. ACS Sustain. Chem. Eng. 2, 2259–2266 (2014). http://pubs.acs.org/doi/abs/10.1021/sc5003566
  4. 4.
    Hronec, M., Fulajtárova, K., Liptaj, T., Štolcová, M., Prónayová, N., Soták, T.: Cyclopentanone: a raw material for production of C15 and C17 fuel precursors. Biomass and Bioenergy. 63, 291–299 (2014).  https://doi.org/10.1016/j.biombioe.2014.02.025 CrossRefGoogle Scholar
  5. 5.
    Cueto, J., Faba, L., Díaz, E., Ordóñez, S.: Cyclopentanone as an alternative linking reactant for heterogeneously catalyzed furfural aldol condensation. ChemCatChem 9 (2017) 1765–1770.  https://doi.org/10.1002/cctc.201601655 CrossRefGoogle Scholar
  6. 6.
    Pino, N., Hincapié, G., López, D.: Selective catalytic route for the synthesis of high-density biofuel using biomass-derived compounds. Energy Fuels. 32, 561–573 (2018).  https://doi.org/10.1021/acs.energyfuels.7b03256 CrossRefGoogle Scholar
  7. 7.
    Bui, T.V., Crossley, S., Resasco, D.E., Chemicals and Fuels from Bio-Based Building Blocks, First edit (2016)Google Scholar
  8. 8.
    Bui, T., Sooknoi, T., Resasco, D.E.: Simultaneous upgrading of furanics and phenolics via hydroxyalkylation/aldol condensation reactions. ChemSusChem. 10 (2017) 1631–1639.  https://doi.org/10.1002/cssc.201601251 CrossRefGoogle Scholar
  9. 9.
    Xu, J., Li, N., Yang, X., Li, G., Wang, A., Cong, Y., Wang, X., Zhang, T.: Synthesis of diesel and jet fuel range alkanes with furfural and angelica lactone. ACS Catal. 7, 5880–5886 (2017).  https://doi.org/10.1021/acscatal.7b01992 CrossRefGoogle Scholar
  10. 10.
    Li, S., Chen, F., Li, N., Wang, W., Sheng, X., Wang, A., Cong, Y., Wang, X., Zhang, T.: Synthesis of renewable triketones, diketones, and jet-fuel range cycloalkanes with 5-hydroxymethylfurfural and ketones. ChemSusChem 10 (2017) 711–719.  https://doi.org/10.1002/cssc.201601727 CrossRefGoogle Scholar
  11. 11.
    Wang, W., Ji, X., Ge, H., Li, Z., Tian, G., Shao, X., Zhang, Q.: Synthesis of C15 and C10 fuel precursors with cyclopentanone and furfural derived from hemicellulose. RSC Adv. 7, 16901–16907 (2017).  https://doi.org/10.1039/C7RA02396K CrossRefGoogle Scholar
  12. 12.
    Pham, T.N., Shi, D., Resasco, D.E.: Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Appl. Catal. B Environ. 145, 10–23 (2014).  https://doi.org/10.1016/j.apcatb.2013.01.002 CrossRefGoogle Scholar
  13. 13.
    Herron, J.A., Vann, T., Duong, N., Resasco, D.E., Crossley, S., Lobban, L.L., Maravelias, C.T.: A systems-level roadmap for biomass thermal fractionation and catalytic upgrading strategies. Energy Technol. 73019, 1–22 (2016).  https://doi.org/10.1002/ente.201600147 Google Scholar
  14. 14.
    Zaimes, G.G., Beck, A.W., Janupala, R.R., Resasco, D.E., Crossley, S.P., Lobban, L.L., Khanna, V.: Multistage torrefaction and in situ catalytic upgrading to hydrocarbon biofuels: analysis of life cycle energy use and greenhouse gas emissions. Energy Environ. Sci. 10, 1034–1050 (2017).  https://doi.org/10.1039/C7EE00682A CrossRefGoogle Scholar
  15. 15.
    Waters, C.L., Janupala, R.R., Mallinson, R.G., Lobban, L.L.: Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: an experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis. 126, 380–389 (2017).  https://doi.org/10.1016/j.jaap.2017.05.008 CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Pan, L., Wang, L., Zou, J.J.: Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids. Chem. Eng. Sci. 180, 95–125 (2018).  https://doi.org/10.1016/j.ces.2017.11.044 CrossRefGoogle Scholar
  17. 17.
    Rinaldi, R., Schüth, F.: Design of solid catalysts for the conversion of biomass. Energy Environ. Sci. 2, 610 (2009).  https://doi.org/10.1039/b902668a CrossRefGoogle Scholar
  18. 18.
    He, Z., Wang, X.: Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catal. Sustain. Energy. 1, 28–52 (2012).  https://doi.org/10.2478/cse-2012-0004 Google Scholar
  19. 19.
    Lam, E., Luong, J.H.T.: Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal. 4, 3393–3410 (2014).  https://doi.org/10.1021/cs5008393 CrossRefGoogle Scholar
  20. 20.
    Ouyang, W., Yepez, A., Romero, A.A., Luque, R.: Towards industrial furfural conversion: Selectivity and stability of palladium and platinum catalysts under continuous flow regime. Catal. Today 308, 32–37 (2018).  https://doi.org/10.1016/j.cattod.2017.07.011 CrossRefGoogle Scholar
  21. 21.
    Garcia-Olmo, A.J., Yepez, A., Balu, A.M., Romero, A.A., Li, Y., Luque, R.: Insights into the activity, selectivity and stability of heterogeneous catalysts in the continuous flow hydroconversion of furfural. Catal. Sci. Technol. 6, 4705–4711 (2016).  https://doi.org/10.1039/c6cy00249h CrossRefGoogle Scholar
  22. 22.
    Maity, S.K.: Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renew. Sustain. Energy Rev. 43, 1427–1445 (2015).  https://doi.org/10.1016/j.rser.2014.11.092 Google Scholar
  23. 23.
    Chang, S.H.: An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy. 62, 174–181 (2014).  https://doi.org/10.1016/j.biombioe.2014.01.002 CrossRefGoogle Scholar
  24. 24.
    Escalante, H., Orduz, J., Zapata, H.J., Cardona, M.C., Duarte, M.: Atlas del potencial energético de la biomasa residual en Colombia, Bucaramanga, Colombia, 2010Google Scholar
  25. 25.
    Kannan, S.: Influence of synthesis methodology and post treatments on structural and textural variations in MgAlCO3 hydrotalcite. J. Mater. Sci. 39, 6591–6596 (2004).  https://doi.org/10.1023/B:JMSC.0000044900.22280.93 CrossRefGoogle Scholar
  26. 26.
    Kannan, S., Vir, R., Jasra: Microwave assisted rapid crystallization of Mg–M(iii) hydrotalcite where M(iii) = Al, Fe or Cr. J. Mater. Chem. 10, 2311–2314 (2000).  https://doi.org/10.1039/b004219f CrossRefGoogle Scholar
  27. 27.
    Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O., Kubička, D.: Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides. Catal. Today. 223, 138–147 (2014).  https://doi.org/10.1016/j.cattod.2013.09.022 CrossRefGoogle Scholar
  28. 28.
    Tichit, D., Lutic, D., Coq, B., Durand, R., Teissier, R.: The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J. Catal. 219, 167–175 (2003).  https://doi.org/10.1016/S0021-9517(03)00192-1 CrossRefGoogle Scholar
  29. 29.
    Deng, Q., Xu, J., Han, P., Pan, L., Wang, L., Zhang, X., Zou, J.J.: Efficient synthesis of high-density aviation biofuel via solvent-free aldol condensation of cyclic ketones and furanic aldehydes. Fuel Process. Technol. 148, 361–366 (2016).  https://doi.org/10.1016/j.fuproc.2016.03.016 CrossRefGoogle Scholar
  30. 30.
    Si, Z., Zhang, X., Wang, C., Ma, L., Dong, R.: An Overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts 7, 169 (2017).  https://doi.org/10.3390/catal7060169 CrossRefGoogle Scholar
  31. 31.
    Roldugina, E.A., Naranov, E.R., Maximov, A.L., Karakhanov, E.A.: Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts. Appl. Catal. A Gen. 553, 24–35 (2018).  https://doi.org/10.1016/j.apcata.2018.01.008 CrossRefGoogle Scholar
  32. 32.
    Sweygers, N., Dewil, R., Appels, L.: Production of levulinic acid and furfural by microwave-assisted hydrolysis from model compounds: effect of temperature, acid concentration and reaction time. Waste Biomass Valoriz. 8 (2017) 1–13.  https://doi.org/10.1007/s12649-016-9797-5 CrossRefGoogle Scholar
  33. 33.
    Yemiş, O., Mazza, G.: Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour. Technol. 102, 7371–7378 (2011).  https://doi.org/10.1016/j.biortech.2011.04.050 CrossRefGoogle Scholar
  34. 34.
    Diez, V.K., Apesteguia, C.R., Di, J.I., Cosimo: Effect of the chemical composition on the catalytic performance of MgyAlOx catalysts for alcohol elimination reactions. J. Catal. 215, 220–233 (2003).  https://doi.org/10.1016/s0021-9517(03)00010-1 CrossRefGoogle Scholar
  35. 35.
    Shen, J., Kobe, J., Chen, Y., Dumesic, J.: Synthesis and surface acid/base properties of magnesium-aluminum mixed oxides obtained from hydrotalcites. Langmuir 18, 3902–3908 (1994). http://pubs.acs.org/doi/abs/10.1021/la00022a082 (accessed 22 Nov 2015)
  36. 36.
    Di Cosimo, J.I., Diez, V.K., Xu, M., Iglesia, E., Apesteguia, C.R.: Structure and surface and catalytic properties of Mg-Al based basic oxides. J. Catal. 178, 499–510 (1998). http://www.sciencedirect.com/science/article/pii/S0021951798921613 (accessed July 20, 2015)
  37. 37.
    El-Tayeb, T.S., Abdelhafez, A.A., Ali, S.H., Ramadan, E.M.: Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Braz. J. Microbiol. 43, 1523–1535 (2012).  https://doi.org/10.1590/S1517-83822012000400037 CrossRefGoogle Scholar
  38. 38.
    Chen, M., Wang, J., xu Zhang, M., gong Chen, M., X. feng Zhu, fei Min, F., Z. cheng Tan: Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. J. Anal. Appl. Pyrolysis. 82, 145–150 (2008).  https://doi.org/10.1016/j.jaap.2008.03.001 CrossRefGoogle Scholar
  39. 39.
    Nur, H., Zainan: Production of sugar by hydrolysis of empty fruit bunches using palm oil mill effluent (POME) based cellulases: optimization study. Afr. J. Biotechnol. 10, 18722–18727 (2011).  https://doi.org/10.5897/AJB11.2744 Google Scholar
  40. 40.
    Abdullah, N., Sulaiman, F., Gerhauser, H.: Characterisation of oil palm empty fruit bunches for fuel application. J. Phys. Sci. 22, 1–24 (2011)Google Scholar
  41. 41.
    Omar, R., Idris, A., Yunus, R., Khalid, K., Aida, M.I., Isma: Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel. 90, 1536–1544 (2011).  https://doi.org/10.1016/j.fuel.2011.01.023 CrossRefGoogle Scholar
  42. 42.
    Parshetti, G.K., Kent Hoekman, S., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 135, 683–689 (2013).  https://doi.org/10.1016/j.biortech.2012.09.042 CrossRefGoogle Scholar
  43. 43.
    Law, K.N., Daud, W.R.W., Ghazali, A.: Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB), BioResources. 2 (2007) 351–362.  https://doi.org/10.15376/biores.2.3.351-362
  44. 44.
    Marrugo, G., Valdés, C.F., Chejne, F.: Characterization of Colombian agroindustrial biomass residues as energy resources. Energy Fuels. 30, 8386–8398 (2016).  https://doi.org/10.1021/acs.energyfuels.6b01596 CrossRefGoogle Scholar
  45. 45.
    Piancatelli, G., Scettri, A., David, G., D’auria, M.: A new synthesis of 3-oxocyclopentenes. Tetrahedron 34, 2775–2778 (1978).  https://doi.org/10.1016/0040-4020(78)88418-X CrossRefGoogle Scholar
  46. 46.
    Piutti, C., Quartieri, F.: The piancatelli rearrangement: New applications for an intriguing reaction. Molecules 18, 12290–12312 (2013).  https://doi.org/10.3390/molecules181012290 CrossRefGoogle Scholar
  47. 47.
    Hronec, M., Fulajtárova, K., Soták, T.: Highly selective rearrangement of furfuryl alcohol to cyclopentanone. Appl. Catal. B Environ. 155, 294–300 (2014).  https://doi.org/10.1016/j.apcatb.2014.02.029 CrossRefGoogle Scholar
  48. 48.
    Resasco, D.E., Wang, B., Crossley, S., Zeolite-Catalysed, C.-C.: Bond forming reactions for biomass conversion to fuels and chemicals. Catal. Sci. Technol. 6, 2543–2559 (2016).  https://doi.org/10.1039/C5CY02271A CrossRefGoogle Scholar
  49. 49.
    Xiong, H., Pham, H.N., Datye, A.K.: Hydrothermally stable heterogeneous catalysts for conversion of biorenewables. Green Chem. 16, 4627–4643 (2014).  https://doi.org/10.1039/C4GC01152J CrossRefGoogle Scholar
  50. 50.
    Lutic, D.: Tailoring the basic and acid sites by thermal treatments of Mg Al hydrotalcites for their use in aldol condensation. Romania. 58, 47–58 (2010)Google Scholar
  51. 51.
    Deng, L., Nie, Q., Pan, G., Zou, L., Zhang, J.J., X., & Wang: Highly selective self-condensation of cyclic ketones using MOF encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem. 17, 4473–4481 (2015).  https://doi.org/10.1039/C5GC01287B CrossRefGoogle Scholar
  52. 52.
    Smoláková, L., Dubnová, L., Kocík, J., Endres, J., Daniš, S., Priecel, P., Čapek, L., Goulas, K.A., Gokhale, A.A.: In-situ characterization of the thermal treatment of Zn–Al hydrotalcites with respect to the formation of Zn/Al mixed oxide active in aldol condensation of furfural. ChemCatChem 157 (2018) 8–18.  https://doi.org/10.1016/j.clay.2018.02.024 Google Scholar
  53. 53.
    Hu, X., Westerhof, R.J.M., Dong, D., Wu, L., Li, C.Z.: Acid-catalyzed conversion of Xylose in 20 solvents: insight into interactions of the solvents with Xylose, furfural, and the acid catalyst. ACS Sustain. Chem. Eng. 2, 2562–2575 (2014).  https://doi.org/10.1021/sc5004659 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y NaturalesUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo de Investigación en Materiales Avanzados y Energía-MATyER, Facultad de IngenieríaInstituto Tecnológico Metropolitano-ITMMedellínColombia

Personalised recommendations