Enrichment of Mesophilic and Thermophilic Mixed Microbial Consortia for Syngas Biomethanation: The Role of Kinetic and Thermodynamic Competition

  • Antonio Grimalt-Alemany
  • Mateusz Łężyk
  • David M. Kennes-Veiga
  • Ioannis V. Skiadas
  • Hariklia N. GavalaEmail author
Original Paper


Mixed culture-based syngas biomethanation is a robust bioconversion process with high versatility in terms of exploitable feedstocks and potential applications, as it could be operated independently, or coupled to anaerobic digestion systems and in-situ biogas upgrading processes. Typically, the syngas biomethanation consists in the stepwise conversion of syngas into methane through a number of catabolic routes, which may vary considerably depending on the operating conditions. In this study, two enrichments were performed at 37 °C and 60 °C to investigate the effect of the incubation temperature on the microbial selection process and the dominant catabolic routes followed. This was carried out through the characterization of the catabolic routes and the microbial composition of the enriched cultures, and a thermodynamic feasibility study on their metabolic networks. The enrichments resulted in two stable microbial consortia with different patterns of activity. The mesophilic enriched consortium presented a more intricate metabolic network composed by four microbial trophic groups, where aceticlastic methanogenesis contributed to 64.9 ± 8.3% of the CH4 production. The metabolic network of the thermophilic enriched consortium was much simpler, consisting in the syntrophic association of carboxydotrophic hydrogenogens and hydrogenotrophic methanogens. This led to significant differences in methane productivity, corresponding to 1.83 ± 0.27 and 33.48 ± 0.90 mmol CH4/g VSS/h for the mesophilic and the thermophilic enriched consortium, respectively, which would potentially make the thermophilic consortium more suited for industrial applications. 16S rRNA gene amplicon analysis indicated the presence of strains with similarity to Acetobacterium sp., Methanospirillum hungateii, Methanospirillum stamsii and Methanothrix sp. at mesophilic conditions, and Thermincola carboxydiphila and Methanothermobacter sp. at thermophilic conditions, implying a role in the conversion of syngas. The thermodynamic feasibility study demonstrated that the microbial selection was not driven solely by kinetic competition, since thermodynamic limitations also played a significant role defining the dominant catabolic routes.


Syngas Carbon monoxide Hydrogen Methane Mixed cultures Thermodynamics 



This work was financially supported by the Technical University of Denmark (DTU) and Innovation Foundation-DK in the frame of SYNFERON project.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12649_2019_595_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1428 KB)
12649_2019_595_MOESM2_ESM.pdf (980 kb)
Supplementary material 2 (PDF 979 KB)


  1. 1.
    Grimalt-Alemany, A., Skiadas, I.V., Gavala, H.N.: Syngas biomethanation: state-of-the-art review and perspectives. Biofuels Bioprod. Biorefining 12, 139–158 (2018)Google Scholar
  2. 2.
    Cantera, S., Muñoz, R., Lebrero, R., Lopez, J.C., Rodríguez, Y., García-Encina, P.A.: Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 50, 128–135 (2018)Google Scholar
  3. 3.
    Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)Google Scholar
  4. 4.
    Batstone, D.J., Virdis, B.: The role of anaerobic digestion in the emerging energy economy. Curr. Opin. Biotechnol. 27, 142–149 (2014)Google Scholar
  5. 5.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)Google Scholar
  6. 6.
    Kumar, A., Jones, D.D., Hanna, M.A.: Thermochemical biomass gasification: a review of the current status of the technology. Energies 2, 556–581 (2009)Google Scholar
  7. 7.
    Asimakopoulos, K., Gavala, H.N., Skiadas, I.V.: Reactor systems for syngas fermentation processes: a review. Chem. Eng. J. 348, 732–744 (2018)Google Scholar
  8. 8.
    Luo, G., Angelidaki, I.: Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 109, 2729–2736 (2012)Google Scholar
  9. 9.
    Daniels, L., Fuchs, G., Thauer, R.K., Zeikus, J.G.: Carbon monoxide oxidation by methanogenic bacteria. J. Bacteriol. 132, 118–126 (1977)Google Scholar
  10. 10.
    O’Brien, J.M., Wolkin, R.H., Moench, T.T., Morgan, J.B., Zeikus, J.G.: Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J. Bacteriol. 158, 373–375 (1984)Google Scholar
  11. 11.
    Rother, M., Metcalf, W.W.: Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl. Acad. Sci. USA 101, 16929–16934 (2004)Google Scholar
  12. 12.
    Diender, M., Pereira, R., Wessels, H.J.C.T., Stams, A.J.M., Sousa, D.Z.: Proteomic analysis of the hydrogen and carbon monoxide metabolism of Methanothermobacter marburgensis. Front. Microbiol. 7, 1–10 (2016)Google Scholar
  13. 13.
    Navarro, S.S., Cimpoia, R., Bruant, G., Guiot, S.R.: Biomethanation of syngas using anaerobic sludge: shift in the catabolic routes with the CO partial pressure increase. Front. Microbiol. 7, 1–13 (2016)Google Scholar
  14. 14.
    Sipma, J., Lens, P.N.L., Stams, A.J.M., Lettinga, G.: Carbon monoxide conversion by anaerobic bioreactor sludges. FEMS Microbiol. Ecol. 44, 271–277 (2003)Google Scholar
  15. 15.
    Alves, J.I., Stams, A.J.M., Plugge, C.M., Alves, M.M., Sousa, D.Z.: Enrichment of anaerobic syngas-converting bacteria from thermophilic bioreactor sludge. FEMS Microbiol. Ecol. 86, 590–597 (2013)Google Scholar
  16. 16.
    Arantes, A.L., Alves, J.I., Stams, A.J.M., Alves, M.M., Sousa, D.Z.: Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor. Microb. Biotechnol. (2017). Google Scholar
  17. 17.
    APHA: Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, DC (1997)Google Scholar
  18. 18.
    Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., Nishijima, M.: Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014)Google Scholar
  19. 19.
    Walters, W., et al.: Transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e0009-15 (2015)Google Scholar
  20. 20.
    Martin, M.: Cutadapt removes adapter sequences from high-thoughput sequencing reads. EMBnet J 17, 10–12 (2011)Google Scholar
  21. 21.
    Edgar, R.C.: UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv (2016)Google Scholar
  22. 22.
    Edgar, R.C.: SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv (2016)Google Scholar
  23. 23.
    Yarza, P., et al.: The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31, 241–250 (2008)Google Scholar
  24. 24.
    Dhariwal, A., Chong, J., Habib, S., King, I.L., Agellon, L.B., Xia, J.: MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, 180–188 (2018)Google Scholar
  25. 25.
    Alberty, R.A.: Thermodynamics of Biochemical Reactions. John Wiley & Sons, Inc, New Jersey (2003)Google Scholar
  26. 26.
    Amend, J.P., Shock, E.L.: Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001)Google Scholar
  27. 27.
    Steinbusch, K.J.J., Hamelers, H.V.M., Buisman, C.J.N.: Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res. 42, 4059–4066 (2008)Google Scholar
  28. 28.
    Jin, Q., Bethke, C.M.: The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007)Google Scholar
  29. 29.
    Grimalt-Alemany, A., Łężyk, M., Lange, L., Skiadas, I.V., Gavala, H.N.: Enrichment of syngas–converting mixed microbial consortia for ethanol production and thermodynamics–based design of enrichment strategies. Biotechnol. Biofuels 11, 1–22 (2018)Google Scholar
  30. 30.
    Bertsch, J., Müller, V.: Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol. Biofuels 8, 1–12 (2015)Google Scholar
  31. 31.
    Lingen, H.J., Van Plugge, C.M., Fadel, J.G., Kebreab, E.: Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS ONE 11, e0161362 (2016)Google Scholar
  32. 32.
    Kaster, A., Moll, J., Parey, K., Thauer, R.K.: Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proc. Natl. Acad. Sci. 108, 2981–2986 (2011)Google Scholar
  33. 33.
    Diekert, G., Wohlfarth, G.: Metabolism of homoacetogens. Antonie Van Leeuwenhoek 66, 209–221 (1994)Google Scholar
  34. 34.
    Oelgeschläger, E., Rother, M.: Carbon monoxide-dependent energy metabolism in anaerobic bacteria and archaea. Arch. Microbiol. 190, 257–269 (2008)Google Scholar
  35. 35.
    Lorowitz, W.H., Bryant, M.P.: Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47, 961–964 (1984)Google Scholar
  36. 36.
    Parshina, S.N., Kijlstra, S., Henstra, A.M., Sipma, J., Plugge, C.M., Stams, A.J.M.: Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 68, 390–396 (2005)Google Scholar
  37. 37.
    Henstra, A.M., Stams, A.J.M.: Deep conversion of carbon monoxide to hydrogen and formation of acetate by the anaerobic thermophile Carboxydothermus hydrogenoformans. Int. J. Microbiol. (2011). Google Scholar
  38. 38.
    Guiot, S.R., Cimpoia, R.: Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Environ. Sci. Technol. 45, 2006–2012 (2011)Google Scholar
  39. 39.
    Sipma, J., Lettinga, G., Stams, A.J.M., Lens, P.N.L.: Hydrogenogenic CO conversion in a moderately thermophilic (55 °C) sulfate-fed gas lift reactor: competition for CO-derived H2. Biotechnol. Prog. 22, 1327–1334 (2006)Google Scholar
  40. 40.
    Liu, R., Hao, X., Wei, J.: Function of homoacetogenesis on the heterotrophic methane production with exogenous H2/CO2 involved. Chem. Eng. J. 284, 1196–1203 (2015)Google Scholar
  41. 41.
    Diekert, G., Ritter, M.: Carbon monoxide fixation into the carboxyl group of acetate during growth of Acetobacterium woodii on H2 and CO2. FEMS Microbiol. Lett. 17, 299–302 (1983)Google Scholar
  42. 42.
    Nguyen, N., Warnow, T., Pop, M., White, B.: A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ. Biofilms Microbiomes, 2, (2016)Google Scholar
  43. 43.
    Patel, G.B., Roth, L.A., Van den Berg, L., Clark, D.S.: Characterization of a strain of Methanospirillurn hungatii. Can. J. Microbiol. 22, 1404–1410 (1976)Google Scholar
  44. 44.
    Genthner, B.R.S., Friedman, S.D., Devereux, R.: Reclassification of Desulfovibrio desulfuricans Nomay 4 as Desulfomicrobium nowegicum comb. nov. and confirmation of Desulfomicrobium escambiense (corrig., formerly “escambium”) as a new species in the genus Desulfomicrobium. Int. J. Syst. Bacteriol. 47, 889–892 (1997)Google Scholar
  45. 45.
    Fournier, G.P., Gogarten, J.P.: Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic clostridia. J. Bacteriol. 190, 1124–1127 (2008)Google Scholar
  46. 46.
    Cord-ruwisch, R., Lovley, D.R.: Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64, 2232–2236 (1998)Google Scholar
  47. 47.
    Hamdi, O., et al.: Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes. Int. J. Syst. Evol. Microbiol. 65, 609–614 (2015)Google Scholar
  48. 48.
    Sokolova, T.G., Kostrikina, N.A., Chernyh, N.A., Kolganova, T.V., Tourova, T.P., Bonch-osmolovskaya, E.A.: Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int. J. Syst. Evol. Microbiol. 55, 2069–2073 (2005)Google Scholar
  49. 49.
    Shiratori, H., et al.: Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int. J. Syst. Evol. Microbiol. 58, 964–969 (2008)Google Scholar
  50. 50.
    Kotsyurbenko, O.R., Glagolev, M.V., Nozhevnikova, A.N., Conrad, R.: Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature. FEMS Microbiol. Ecol. 38, 153–159 (2001)Google Scholar
  51. 51.
    Savage, M.D., Wu, Z., Daniel, S.L., Lundie, L.L., Drake, H.L.: Carbon monoxide dependent chemolithotrophic growth of Clostridiurn thermoautotrophicum. Appl. Environ. Microbiol. 53, 1902–1906 (1987)Google Scholar
  52. 52.
    Kerby, R.L., Ludden, P.W., Roberts, G.P.: Carbon monoxide-dependent growth of Rhodospirillum rubrum. J. Bacteriol. 177, 2241–2244 (1995)Google Scholar
  53. 53.
    Slepova, T.V., et al.: Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int. J. Syst. Evol. Microbiol. 56, 797–800 (2006)Google Scholar
  54. 54.
    Wang, W., Xie, L., Luo, G., Zhou, Q., Angelidaki, I.: Performance and microbial community analysis of the anaerobic ractor with coke oven gas biomethanation and in situ biogas upgrading. Bioresour. Technol. 146, 234–239 (2013)Google Scholar
  55. 55.
    Westermann, P., Ahring, B.K., Mah, R.A.: Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. 55, 514–515 (1989)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Antonio Grimalt-Alemany
    • 1
  • Mateusz Łężyk
    • 2
  • David M. Kennes-Veiga
    • 1
  • Ioannis V. Skiadas
    • 1
  • Hariklia N. Gavala
    • 1
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Institute of Environmental Engineering, Faculty of Civil and Environmental EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations