Advertisement

Feasibility of Using a Lignin-Containing Waste in Asphalt Binders

  • Ignacio PérezEmail author
  • Ana R. Pasandín
  • Jorge C. Pais
  • Paulo A. A. Pereira
Original Paper
  • 22 Downloads

Abstract

A lot of water waste streams are produced during the production of hardboard panels. This paper analyses the feasibility of using a lignin-containing waste from the hardboard industry in asphalt binders. It would contribute to both waste reduction and decrease of the consumption of asphalt in order to obtain environmental, economic and social benefits. The waste from the hardboard industry was not subjected to any transformation i.e. it was blended directly with the conventional asphalt. Asphalt binder samples blended with 0, 5, 10, 20 and 40% of the waste were aged in a rolling thin-film oven apparatus. Basic characterisation (penetration grade, ring and ball softening point and resilience) as well as advanced characterisation (dynamic viscosity, shear complex modulus and phase angle) were performed. Asphalt binders blended with up to 20% waste can be stored, pumped and handled at hot-mix asphalt facilities. Addition of the waste to asphalt binder increases the viscosity and the shear complex modulus and reduces the phase angle. The waste produces asphalt binders with higher storage modulus and lower loss tangent. The waste enhances fatigue and rutting resistance. Asphalt binder with 20% of waste displays the best potential for use as an extender and as well as an enhancer in asphalt pavements. The research results can offer technical support to value this waste from hardboard production, without the need for subsequent transformations.

Keywords

Lignin Asphalt Binder Hardboard Waste Pavement 

Notes

Acknowledgements

The authors wish to express their sincere gratitude to Betanzos HB for the waste and REPSOL for the asphalt generously donated for the research.

References

  1. 1.
    Food and Agriculture Organization of the United Nations: Forest Products 2015. FAO Statistics, Yearbook, Rome (2017)Google Scholar
  2. 2.
    Akers, L.E.: Types of hardboard their manufacture and properties. In: Kape, J., (ed) Particle Board and Hardboard. Pergamon Series of Monographs on Furniture and Timber, Pergamon. pp. 125–142. Elsevier, Amsterdam (1966)Google Scholar
  3. 3.
    Doozel-Horwath, E., Hutter, T., Wimmer, K.R.: Feedback and feedforward control wet-processed hardboard production using spectroscopy and chemometric modelling. Anal. Chim. Acta (2005).  https://doi.org/10.1016/j.aca.2005.03.072 Google Scholar
  4. 4.
    Hutter, Th, Wimmer, R., Kessler, R.: Characterizing wet-process hardboard manufacture by the use of experimental design. In: Shupe, T.F. (ed.) Recent Development in Wood Composites. pp. 81–90. Forest Products Society, Madison (2006)Google Scholar
  5. 5.
    Asphalt Institute: Performance Graded Asphalt Binder Specification and Testing. Superpave Series no 1. 3. Lexington, Kentucky (2003)Google Scholar
  6. 6.
    Transportation Research Board: Alternative Binders for Sustainable Asphalt Pavements. Papers from a Workshop, Transportation Research Circular Number E-C165: (2012)Google Scholar
  7. 7.
    Peralta, J., Raouf, M.A., Tang, S., Williams, R.C.: Bio-renewable asphalt modifiers and asphalt substitutes. In: Gopalakrishnan, K., van Leeuwen, J., Brown, R. (eds.) Sustainable Bioenergy and Bioproducts, Green Energy and Technology pp. 89–115, Springer, London (2012)CrossRefGoogle Scholar
  8. 8.
    Brauns, F.E.: The Chemistry of Lignin. Academia Press Inc. Publishers, New York (1952)Google Scholar
  9. 9.
    Watkins, D., Nuruddin, Md, Hosur, M., Tcherbi-Nateh, A., Jeelani, S.: Extraction and characterization of lignin form different biomass resources. J. Mater. Res. Technol. (2015).  https://doi.org/10.1016/j.jmrt.2014.10.009 Google Scholar
  10. 10.
    Mainka, H., Täger, O., Köner, E., Hilfert, L., Busse, S., Edelmann, F.T., Herrmann, A.S.: Lignin-and alternative precursor for sustainable cost-effective automotive carbon fiber. J. Mater. Res. Technol. (2015). https://doi.org/10.1016/j.jmrt.2014.10.009 Google Scholar
  11. 11.
    Terrel, R., Rimsritong, S.: Wood lignins used as extenders for asphalt in bituminous pavements. Proc. Assoc. Asphalt Technol. 48, 111–134 (1979)Google Scholar
  12. 12.
    Van Vliet, D., Slaghek, T., Giezen, C., Haaksman, I.: Lignin as a Green alternative for bitumen. In: EAPA and Eurobitumen, organizer. In: Proceedings of the 6th Euroasphalt & Eurobitume Congress; Jun 1–3, Prague, Czech Republic (2016)Google Scholar
  13. 13.
    Wang, H., Derewecki, K.: Rheological properties of asphalt binder partially substituted with wood lignin. In: Al-Qadi, I.L, Scott Murrell, P.E., (eds) Proceedings of the 2013 Airfield and Highway Pavement Conference, pp. 977–986. ASCE, Los Angeles, California (2013)Google Scholar
  14. 14.
    Asukar, S.D., Behl, A., Gundaliya, P.J.: Utilization of lignin as an antioxidant in asphalt binder. Int. J. Innov. Res. Techno. 2, 198–207 (2016)Google Scholar
  15. 15.
    Slaghek, T.M., van Vliet, D., Giezen, C., Haaksman, I.K.: U.S. Patent Application No. 15/125, 268 (2017)Google Scholar
  16. 16.
    Sundstrom, D.W., Kiel, H.E., Daubenspeck, T.H.: Use of byproduct lignins as extenders in asphalt. Ind. Eng. Chem. Prod. RD. (1983).  https://doi.org/10.1021/i300011a022 Google Scholar
  17. 17.
    Fayzrakhmanova, G.M., Zabelkin, S.A., Grachev, A.N., Bashkirov, V.N.: A study of the properties of a composite asphalt binder using liquid products of wood fast pyrolysis. Polym. Sci., Ser. D. (2015)  https://doi.org/10.1134/S1995421216020052 Google Scholar
  18. 18.
    Macready, N., Williams, R.C.: The utilization of Agricultural Derived Lignin as an Antioxidant in Asphalt Binder. Iowa State University, organizer. In: Proceedings of the 2007 Mid-Continent Transportation Research Symposium, Aug 16–17, Ames, Iowa (2007)Google Scholar
  19. 19.
    Bishara, S.W., Robertson, R.E., Mahoney, D.: Lignin as an Antioxidant: A Limited Study on Asphalts Frequently Use don Kansas Roads. Transportation Research Board, organizer. In: Proceedings of the 85th Transportation Research Board Annual Meeting, Jan 22–26, Washington, D.C. (2006)Google Scholar
  20. 20.
    Xie, S., Li, Q., Karki, P., Zhou, F., Yuan, J.S.: Lignin as renewable and superior asphalt binder modifier. ACS Sustain. Chem. Eng. (2017).  https://doi.org/10.1021/acssuschemeng.6b03064 Google Scholar
  21. 21.
    Xu, G., Wang, H., Zhu, H.: Rheological properties and anti-aging performance of asphalt binder modified with wood lignin. Constr. Build. Mate. (2017).  https://doi.org/10.1016/j.conbuildmat.2017.06.151 Google Scholar
  22. 22.
    Batista, K.B., Padilha, R.P.L., Castro, T.O., Silva, C.F.S.C., Araújo, M.F.A.S., Leite, L.F.M., Lins, V.F.C.: High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind. Crops Prod. (2018).  https://doi.org/10.1016/j.indcrop.2017.10.010 Google Scholar
  23. 23.
    Macready, N., Williams, R.C.: Utilization of biofuel coproducts as performance enhancers in asphalt binder. Transport. Res. Rec. (2008).  https://doi.org/10.3141/2051-02 Google Scholar
  24. 24.
    Tang, S., Williams, R.C.: Antioxidant effect of Bio-Oil Additive ESP on Asphalt Binder. Iowa State University, organizer. In: Proceedings of the 2009 Mid-Continent Transportation Research Symposium, Aug 20–21, Ames, Iowa (2009)Google Scholar
  25. 25.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 12607-1 Determination of the Resistance to Hardening under Influence of Heat and Air. Part 1: RTFOT Method. Madrid, Spain (2007)Google Scholar
  26. 26.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 1426 Determination of Needle Penetration. Madrid, Spain (2007)Google Scholar
  27. 27.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 1427 Determination of the Softening Point. Ring and Ball Method. Madrid, Spain (2007)Google Scholar
  28. 28.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 13880-3 Test method for the determination of penetration and recovery (resilience). Madrid, Spain (2004)Google Scholar
  29. 29.
    Bearsley, S., Forbes, A., Haverkamp, R.G.: Direct observation of the asphaltenes structure in paving-grade bitumen using confocal laser-scanning microscopy. J. Microsc. (2004).  https://doi.org/10.1111/j.0022-2720.2004.01373.x MathSciNetGoogle Scholar
  30. 30.
    Handle, F., Grothe, H., Neudl, S.: Confocal laser scanning microscopy—observation of the microstructure of bitumen and asphalt concrete. In: EAPA and Eurobitumen, organizer.5th Euroasphalt & Eurobitume Congress, Jun 1–3, Istanbul, Turkey (2012)Google Scholar
  31. 31.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 13339 Determination of Storage Stability of Modify Bitumen. Madrid, Spain (2010)Google Scholar
  32. 32.
    Ministerio de Fomento. Betunes Modificados con Polímeros: Artículo 212 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3). Madrid (2014)Google Scholar
  33. 33.
    Silva, H.M.R.D., Oliveira, J.R.M., Ferreira, C.I.G., Peralta, J.: Evaluation of the rheological behaviour of warm mix asphalt (WMA) modified binders. In: Loizos, A., Partl, M.N., Scarpas, T., Al-Qadi, I.L., (eds.). Proceedings of the 7th International RILEM Symposium on Advanced Testing and Characterization of Bituminous Materials (ATCBM09), pp. 661–673. CRC Press/Balkema, Rhodes, Greece (2009)Google Scholar
  34. 34.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 13302 Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus. Madrid, Spain (2010)Google Scholar
  35. 35.
    AENOR: Asociación Española de Normalización y Certificación: UNE-EN 14770 Determination of Complex Shear Modulus and Phase Angle. Dynamic Shear Rheometer (DSR). Madrid, Spain (2012)Google Scholar
  36. 36.
    Goodrich, J.L.: Asphalt and polymer modified asphalt properties related to the performance of asphalt concrete mixes. Proc. Assoc. Asphalt Paving Technol. 57, 116–117 (1988)Google Scholar
  37. 37.
    Goodrich, J.L.: Asphaltic binder rheology, asphalt concrete rheology and asphalt concrete mix properties. Proc. Assoc. Asphalt Paving Technol. 60, 80–120 (1991)Google Scholar
  38. 38.
    Miró, J.R.: Metodología para la Caracterización de Ligantes Asfálticos mediante el empleo del Ensayo Cántabro. Tesis Doctoral, Universitat Politècnica de Catalunya (1994)Google Scholar
  39. 39.
    Pen, L., Liu, J.: Characterization of Alaskan HMA Mixtures with the Simple Performance Tester. Final report, Alaska University Transportation Center (2014)Google Scholar
  40. 40.
    Airey, G.D.: Rheological properties of styrene butadiene styrene polymer modified road bitumen. Fuel. (2003).  https://doi.org/10.1016/S0016-2361(03)00146-7 Google Scholar
  41. 41.
    Airey, G.D.: Fundamental binder and practical mixture evaluation of polymer modified bituminous materials. Int. J. Pavement Eng. (2007).  https://doi.org/10.1080/10298430412331314146 Google Scholar
  42. 42.
    Martínez-Díaz, M., Pérez, I., Romera-Rodríguez, L.E.: Review of warm mix asphalt new technologies. Dyna. (2013).  https://doi.org/10.6036/5410 Google Scholar
  43. 43.
    Rodríguez-Alloza, A.M., Gallego, J., Pérez, I., Bonati, A., Giuliani, F.: High and low temperature of crumb rubber modified binders containing warm mix asphalt additives. Constr. Build. Mate. (2014).  https://doi.org/10.1016/j.conbuildmat.2013.12.026 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Universidade da Coruña, E.T.S.I. CaminosCoruñaSpain
  2. 2.CTAC, Escola de Engenharia, Universidade do MinhoGuimarãesPortugal

Personalised recommendations