Biochemical Properties of Carbohydrate-Active Enzymes Synthesized by Penicillium chrysogenum Using Corn Straw as Carbon Source

  • Luísa de M. B. Silva
  • Tainah C. Gomes
  • Sadia F. Ullah
  • Alonso R. P. Ticona
  • Pedro R. V. HamannEmail author
  • Eliane F. Noronha
Original Paper


Lignocellulosic material is an alternative, renewable and cheaper source of molecules to be applied in greener industrial processes. Its utilization for this purpose requests steps of pre-treatment and hydrolysis. Filamentous fungi are receiving attention as source of plant cell wall degrading enzymes to apply in lignocellulosic biomass hydrolysis. In the present study, a strain of Penicillium chrysogenum CCDCA10756 isolated from Brazilian Cerrado soil (Savannah like biome) was evaluated as a producer of plant cell wall degrading enzymes aiming industrial application. The fungus cultivated in the presence of corn straw as sole carbon source secreted cellulases (endo-β-1,4-glucanases, cellobiohydrolases, β-glucosidases), endo-β-1,4-xylanases, and pectinases. Endo-β-1,4-xylanases and pectinases presented earlier production reaching maximum values after 3 days of growth in comparison to cellulolytic activities mostly produced after 5 days. Cellobiohydrolases and endo-β-1,4-glucanases present maximal activity in acid pH (3 and 4) and at 50 °C, whereas β-glucosidase presents maximal activity at pH 5.0 and 60 °C. Pectinases showed maximum activity in pH 8 at 50 °C. Furthermore, endo-β-1,4-glucanases and cellobiohydrolases displayed remarkable thermostability at 40 °C. Lignin-derived compounds, trans-ferulic acid, 4-hydroxybenzoic and syringaldehyde inhibited cellobiohydrolases. Pectinolytic activity, instead, was improved in the presence of p-coumaric acid, trans-ferulic acid, and syringaldehyde.


Cellulases Biorefinery Lignocellulosic biomass Bioethanol 



This work was supported by research grants from the University of Brasilia – UnB, CNPq, and FAPDF. Eliane F. Noronha is recipient of Brazilian Research Council (CNPq) research scholarship. Pedro R.V Hamann, and Alonso R.P. Ticona are recipient of CAPES doctoral degree scholarship, Sadia F. Ullah is the recipient of CNPq doctoral’s degree scholarship.


  1. 1.
    Limayem, A., Ricke, S.C.: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38, 449–467 (2012). CrossRefGoogle Scholar
  2. 2.
    Ferreira-Leitao, V., Gottschalk, L.M.F., Ferrara, M.A., Nepomuceno, A.L., Molinari, H.B.C., Bon, E.P.S.: Biomass residues in Brazil: Availability and potential uses. Waste Biomass Valoriz. 1, 65–76 (2010). CrossRefGoogle Scholar
  3. 3.
    Soccol C.R., Vandenberghe L.P., Medeiros A.B., Karp S.G., Buckeridge M, Ramos L.P., Pitarelo A.P., Ferreira-Leitão V, Gottschalk L.M., Ferrara MA, da Silva Bon E.P., de Moraes L.M., Araújo Jde A, Torres F.A.: Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour. Technol. 101, 4820–4825 (2010). CrossRefGoogle Scholar
  4. 4.
    Demain, A.L.: Biosolutions to the energy problem. J. Ind. Microbiol. Biotechnol. 36, 319–332 (2009). CrossRefGoogle Scholar
  5. 5.
    Strassberger, Z., Tanase, S., Rothenberg, G.: The pros and cons of lignin valorisation in an integrated biore fi nery. RSC Adv. 25310–25318 (2014).
  6. 6.
    Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003). CrossRefGoogle Scholar
  7. 7.
    Anwar, Z., Gulfraz, M., Irshad, M.: Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiat. Res. Appl. Sci. 7, 163–173 (2014). CrossRefGoogle Scholar
  8. 8.
    Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46, 541–549 (2010). CrossRefGoogle Scholar
  9. 9.
    Gilbert, H.J., Hazlewood, G.P.: Bacterial cellulases and xylanases. J. Gen. Microbiol. 139, 187–194 (1993). CrossRefGoogle Scholar
  10. 10.
    Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001). CrossRefGoogle Scholar
  11. 11.
    Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005). CrossRefGoogle Scholar
  12. 12.
    Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005). CrossRefGoogle Scholar
  13. 13.
    Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour. Technol. 77, 215–227 (2001). CrossRefGoogle Scholar
  14. 14.
    Adeleke, A.J., Odunfa, S.A., Olanbiwonninu, A., Owoseni, M.C.: Production of cellulase and pectinase from orange peels by fungi\n. Nat. Sci. 10, 107–112 (2012)Google Scholar
  15. 15.
    Forsberg, Z., Mackenzie, A.K., Sørlie, M., Røhr, ÅK., Helland, R., Arvai, A.S., Vaaje-Kolstad, G., Eijsink, V.G.H.: Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA. 111, 8446–8451 (2014). CrossRefGoogle Scholar
  16. 16.
    Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P., Yaguchi, M.: Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2’-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61, 1876–1880 (1995)Google Scholar
  17. 17.
    Ibrahim, V., Mendoza, L., Mamo, G., Hatti-Kaul, R.: Blue laccase from Galerina sp.: properties and potential for kraft lignin demethylation. Process Biochem. 46, 379–384 (2011). CrossRefGoogle Scholar
  18. 18.
    Saloheimo, M., Paloheimo, M., Hakola, S., Pere, J., Swanson, B., Nyyssönen, E., Bhatia, A., Ward, M., Penttilä, M.: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem. 269, 4202–4211 (2002). CrossRefGoogle Scholar
  19. 19.
    Ertan, F., Balkan, B., Balkan, S., Aktac, T.: Solid state fermentation for the production of α -amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate. 657–661 (2006).
  20. 20.
    Ferrer, M., Plou, F.J., Nuero, O.M., Reyes, F., Ballesteros, A.: Purification and properties of a lipase from Penicillium chrysogenum isolated from industrial wastes. J. Chem. Technol. Biotechnol. 75, 569–576 (2000).;2-S CrossRefGoogle Scholar
  21. 21.
    Nwodo, S.C., Uzoma, A.O., Thompson, N.E., Victoria, I.O.: Xylanase production of Aspergillus niger and Penicillium chrysogenum from ammonia pretreated cellulosic waste. Res. J. Microbiol. 3(4), 246–253 (2008)Google Scholar
  22. 22.
    Vangulik, W.M., Antoniewicz, M.R., Delaat, W.T.A.M., Vinke, J.L., Heijnen, J.J.: Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol. Bioeng. 72, 185–193 (2001).;2-M CrossRefGoogle Scholar
  23. 23.
    Backus, M.P., Stauffer, J.F., Johnson, M.J.: Penicillin yields from new mold strains. J. Am. Chem. Soc. 68, 152–153 (1946). CrossRefGoogle Scholar
  24. 24.
    Yang, Y., Yang, J., Liu, J., Wang, R., Liu, L., Wang, F., Yuan, H.: The composition of accessory enzymes of Penicillium chrysogenum P33 revealed by secretome and synergistic effects with commercial cellulase on lignocellulose hydrolysis. Bioresour. Technol. 257, 54–61 (2018). CrossRefGoogle Scholar
  25. 25.
    Duarte, G., Moreira, L., Gómez-Mendoza, D., Siqueira, F.G., De Batista, L., Amaral, L., Ricart, C., Filho, E.: Use of Residual biomass from the textile industry as carbon source for production of a low-molecular-weight xylanase from Aspergillus oryzae. Appl. Sci. 2, 754–772 (2012). CrossRefGoogle Scholar
  26. 26.
    Miller, G.L.: Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Anal. Chem. 3, 426–428 (1959)CrossRefGoogle Scholar
  27. 27.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976). CrossRefGoogle Scholar
  28. 28.
    Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M.: Inhibition of cellulases by phenols. Enzyme Microb. Technol. 48, 54–60 (2011). CrossRefGoogle Scholar
  29. 29.
    Ximenes, E., Kim, Y., Mosier, N., Dien, B., Ladisch, M.: Deactivation of cellulases by phenols. Enzyme Microb. Technol. 48, 54–60 (2011). CrossRefGoogle Scholar
  30. 30.
    De S. Moreira L.R., De Carvalho Campos, M., De Siqueira, P.H., Silva, L.P., Ricart, C.A., Martins, P.A., Queiroz, R.M., Filho, E.X..: Two β-xylanases from Aspergillus terreus: characterization and influence of phenolic compounds on xylanase activity. Fungal Genet. Biol. 60, 46–52 (2013). CrossRefGoogle Scholar
  31. 31.
    LAEMMLI, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685 (1970)CrossRefGoogle Scholar
  32. 32.
    Zhang, M., Su, R., Qi, W., He, Z.: Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes. 1407–1414 (2010).
  33. 33.
    Goyal, A., Ghosh, B., Eveleigh, D.: Characteristics of fungal cellulases. Bioresour. Technol. 36, 37–50 (1991). CrossRefGoogle Scholar
  34. 34.
    Haas, H., Herfurth, E., Stöffler, G., Redl, B.: Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim. Biophys. Acta—Gen. Subj. 1117, 279–286 (1992). CrossRefGoogle Scholar
  35. 35.
    Chen, M., Qin, Y., Liu, Z., Liu, K., Wang, F., Qu, Y.: Enzyme and microbial technology isolation and characterization of a ␤ -glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46, 444–449 (2010). CrossRefGoogle Scholar
  36. 36.
    Krogh, K.B.R.M., Harris, P.V., Olsen, C.L., Johansen, K.S., Hojer-pedersen, J., Borjesson, J., Olsson, L.: Characterization and kinetic analysis of a thermostable GH3 β -glucosidase from Penicillium brasilianum. 143–154 (2010).
  37. 37.
    Terrone, C.C., Freitas, C., De, Rafael, C., Terrasan, F., Almeida, A.F., De Carmona, E.C.: Agroindustrial biomass for xylanase production by Penicillium chrysogenum: purification, biochemical properties and hydrolysis of hemicelluloses. Electron. J. Biotechnol. 33, 1–7 (2018). CrossRefGoogle Scholar
  38. 38.
    Sakamoto, T., Kawasaki, H.: Purification and properties of two type-B a-L-arabinofuranosidases produced by Penicillium chrysogenum. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1621, 204–210 (2003). CrossRefGoogle Scholar
  39. 39.
    Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., Beg, Q.: Microbial alkaline pectinases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 59, 409–418 (2002). CrossRefGoogle Scholar
  40. 40.
    Alafia, A., Llama, M.J.: Purification and some properties of the pectin lyase from Penicillhtm italicum. 2, 335–340 (1991)Google Scholar
  41. 41.
    Narra, M., Dixit, G., Divecha, J., Kumar, K., Madamwar, D., Shah, A.R.: Production, purification and characterization of a novel GH 12 family endoglucanase from Aspergillus terreus and its application in enzymatic degradation of delignified rice straw. Int. Biodeterior. Biodegrad. 88, 150–161 (2014). CrossRefGoogle Scholar
  42. 42.
    Johnson, E.A., Demain, A.L.: Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum. Arch. Microbiol. 137, 135–138 (1984)CrossRefGoogle Scholar
  43. 43.
    Akiba, S., Kimura, Y., Yamamoto, K., Kumagai, H.: Purification and characterization of a protease-resistant cellulase from Aspergillus niger. J. Ferment. Bioeng. 79, 125–130 (1995)CrossRefGoogle Scholar
  44. 44.
    Sposina, R., Teixeira, S., Souza, M.V., De Ximenes, E., Filho, F.: Purification and characterization studies of a thermostable b -xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol 37, 1041–1051 (2010). CrossRefGoogle Scholar
  45. 45.
    Tejirian, A., Xu, F.: Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes. Appl. Environ. Microbiol. 76, 7673–7682 (2010). CrossRefGoogle Scholar
  46. 46.
    Xu, F., Ding, H., Tejirian, A.: Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb. Technol. 45, 203–209 (2009). CrossRefGoogle Scholar
  47. 47.
    Davies, G., Henrissat, B.: Structures and mechanisms of glycosyl hydrolases. Structure. 3, 853–859 (1995). CrossRefGoogle Scholar
  48. 48.
    Tejirian, A., Xu, F.: Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb. Technol. 48, 239–247 (2011). CrossRefGoogle Scholar
  49. 49.
    Yaoi, K., Kondo, H., Hiyoshi, A., Noro, N., Sugimoto, H., Tsuda, S., Mitsuishi, Y., Miyazaki, K.: The Structural basis for the exo-mode of Action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J. Mol. Biol. 370, 53–62 (2007). CrossRefGoogle Scholar
  50. 50.
    Cannella, D., Hsieh, C.W.C., Felby, C., Jørgensen, H.: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol. Biofuels. 5, 1–10 (2012). CrossRefGoogle Scholar
  51. 51.
    Vieira, W.B., Rios, L., Moreira, D.S., Neto, A.M., Ximenes, E., Filho, F.: Production and Characterization of an Enzyme Complex From a New Strain of Clostridium Thermocellum With Emphasis on Its Xylanase Activity. Braz. J. Microbiol. 38, 237–242 (2007)CrossRefGoogle Scholar
  52. 52.
    Yu, P., Xu, C.: Production optimization, purification and characterization of a heat-tolerant acidic pectinase from Bacillus sp. ZJ1407. Int. J. Biol. Macromol. 108, 972–980 (2018). CrossRefGoogle Scholar
  53. 53.
    Monti, A., Di Virgilio, N., Venturi, G.: Mineral composition and ash content of six major energy crops. Biomass Bioenergy. 32, 216–223 (2008). CrossRefGoogle Scholar
  54. 54.
    Wu, H.S., Wang, Y., Zhang, C.Y., Bao, W., Ling, N., Liu, D.Y., Shen, Q.R.: Growth of in vitro Fusarium oxysporum f. sp. niveum in chemically defined media amended with gallic acid. Biol. Res. 42, 297–304 (2009). CrossRefGoogle Scholar
  55. 55.
    Duarte, G.C., Moreira, L.R.S., Jaramillo, P.M.D., Filho, E.X.F.: Biomass-derived inhibitors of holocellulases. Bioenergy Res. 5, 768–777 (2012). CrossRefGoogle Scholar
  56. 56.
    Silva, C., de O.G., Aquino, Ricart, E.N., Midorikawa, C.A.O., Miller, G.E.O., Filho, R.N.G.: E.X.F.: GH11 xylanase from emericella nidulans with low sensitivity to inhibition by ethanol and lignocellulose-derived phenolic compounds. FEMS Microbiol. Lett. 362, 1–8 (2015). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Cell Biology Department, Enzymology LaboratoryUniversidade de BrasiliaBrasiliaBrazil

Personalised recommendations