Advertisement

The Digestion of Waste from Vegetables and Maize Processing

  • Tomas VitezEmail author
  • Tereza Dokulilova
  • Monika Vitezova
  • Jakub Elbl
  • Antonin Kintl
  • Jindrich Kynicky
  • Jan Hladky
  • Martin Brtnicky
Original Paper
  • 23 Downloads

Abstract

Purpose

This study was carried out in order to find a possible use for waste produced during the processing of vegetables and maize. Anaerobic fermentation is a suitable way to handle this wet and easily biodegradable organic material. The aim of this study was to evaluate the impact of waste corn kernels, peas, crushed corn kernels, French beans, mixed vegetables (broccoli, cauliflower, peas and carrot), corn leaf and corn husk on anaerobic fermentation.

Methods

Anaerobic fermentation tests was carried out in batch fermenters (5 dm3) for 21 days at 42 °C. During this period the quantity and quality of biogas produced were monitored. The following substrate parameters were determined: dry matter content, organic dry matter content, nutrients content (protein, fat, fibre, starch, acid detergent fibre, neutral detergent fibre) and elemental composition.

Results

The hypothesis predicting the inhibitory impact of substrates on the anaerobic process was not confirmed. Biogas production after 21 days of hydraulic retention time ranged from 0.6773 m3/kg of organic dry matter (peas) to 1.1108 m3/kg of organic dry matter (mixed vegetables). All substrates had the final concentration of methane in the biogas ranged from 59.43 to 65.97%vol. The hypothesis about the impact of pre-treatment of substrates (crushing) on the quantity of the biogas produced was confirmed. The biogas production from the crushed corn kernel was significantly higher than the biogas production from substrates with a similar composition of nutrients (corn kernel, peas).

Conclusion

Vegetables and maize waste produced during processing is a suitable substrate for anaerobic fermentation.

Keywords

Anaerobic fermentation Biogas Methane Vegetable Maize 

Notes

Acknowledgements

This paper was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and by the Internal Grant Agency of the Faculty of AgriSciences, Mendel University in Brno [project number IP 034/2018].

References

  1. 1.
    Food and Agriculture Organization of the United Nations, Global food losses and food waste—extent, causes and prevention. Rome, FAO (2011)Google Scholar
  2. 2.
    Nguyen, P.H.L., Kuruparan, P., Visvanathan, C.: Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour. Technol. 98, 380–387 (2007)CrossRefGoogle Scholar
  3. 3.
    Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G., Kovács, K.L.: Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition, PLoS ONE, 8(10), e77265 (2013)CrossRefGoogle Scholar
  4. 4.
    Garcia-Pena, E.I., Parameswaran, P., Kang, D.W., Canul-Chan, M., Krajmalnik-Brown, R.: Anaerobic digestion and co-digestion processes of vegetables and fruit residues: process and microbial ecology. Bioresour. Technol. 102, 9447–9455 (2011)CrossRefGoogle Scholar
  5. 5.
    Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., Van Impe, J.F.M., Dewil, R.: Anaerobic digestion in global bio-energy production: potential and research challenges. Renew. Sustain. Energy Rev. 15(9), 4295–4301 (2011)CrossRefGoogle Scholar
  6. 6.
    Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)CrossRefGoogle Scholar
  7. 7.
    Zuo, Z., Wu, S., Zhang, W., Dong, R.: Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetables waste. Bioresour. Technol. 146, 556–561 (2013)CrossRefGoogle Scholar
  8. 8.
    Ahring, B., Biswas, R., Ahamed, A., Teller, P., Uellendahl, H.: Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour. Technol. 175, 182–188 (2015)CrossRefGoogle Scholar
  9. 9.
    Ji, Ch, Kong, Ch, Mei, Z., Li, J.: A review of the anaerobic digestion of fruit and vegetables waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017)CrossRefGoogle Scholar
  10. 10.
    Czech Standards Institute: Characterization of waste—calculation of dry matter by determination of dry residue or water content, CSN EN ISO 14346. Czech Standards Institute, Praha (2007)Google Scholar
  11. 11.
    Czech Standards Institute: Characterization of waste—determination of loss on ignition in waste, sludge and sediments, CSN EN ISO 15169. Czech Standards Institute, Praha (2007)Google Scholar
  12. 12.
    Omote, J., Kohno, H., Toda, K.: X-ray fluorescence analysis utilizing the fundamental parameter method for the determination of the elemental composition in plant substrates. Anal. Chim. Acta 307, 117–126 (1995)CrossRefGoogle Scholar
  13. 13.
    Weindorf, C.D., Bakr, N., Zhu, Y.: Chapter one-advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Adv. Agron. 128, 1–45 (2014)CrossRefGoogle Scholar
  14. 14.
    VDI-Gesellschaft Energietechnik/Fachausschuss Regenerative Energien: Fermentation of organic materials, characterisation of the substrate, sampling, collection of material data, fermentation tests, VDI 4630. VDI, Berlin (2006)Google Scholar
  15. 15.
    Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J.P., Delgenes, J.P.: Single-phase and two-phase anaerobic digestion of fruit and vegetables waste: comparison of start-up, reactor stability and process performance. Waste Manag. 34, 875–885 (2014)CrossRefGoogle Scholar
  16. 16.
    Molinuevo-Salces, B., González-Fernández, C., Gómez, X., García-González, M.C., Morán, A.: Vegetables processing wastes addition to improve swine manure anaerobic digestion: evaluation in terms of methane yield and SEM characterization. Appl. Energy 91, 36–42 (2012)CrossRefGoogle Scholar
  17. 17.
    Bouallagui, H., Cheikh, R.B., Marouani, L., Hamdi, M.: Mesophilic biogas production from fruit and vegetables waste in a tubular digester. Bioresour. Technol. 86, 85–89 (2003)CrossRefGoogle Scholar
  18. 18.
    Jiang, Y., Heaven, S., Banks, C.J.: Strategies for stable anaerobic digestion of vegetables waste. Renew. Energy 44, 206–214 (2012)CrossRefGoogle Scholar
  19. 19.
    Achinas, S., Euverink, G.J.W.: Theoretical analysis of biogas potential prediction from agricultural waste. Resour. Eff. Technol. 2(3), 143–147 (2016)Google Scholar
  20. 20.
    Angelidaki, I., Sanders, W.: Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3(2), 117–129 (2004)CrossRefGoogle Scholar
  21. 21.
    Prajapati, S.K., Malik, A., Vijay, V.K.: Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl. Energy 114, 790–797 (2014)CrossRefGoogle Scholar
  22. 22.
    Qiao, W., Yan, X., Ye, J., Sun, Z., Wang, W., Zhang, Z.: Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew. Energy 36(12), 3313–3318 (2011)CrossRefGoogle Scholar
  23. 23.
    Menardo, S., Balsari, P., Tabacco, E., Borreani, G.: Effect of conservation time and the addition of lactic acid bacteria on the biogas and methane production of corn stalk silage. Bioenergy Res. 8(4), 1810–1823 (2015)CrossRefGoogle Scholar
  24. 24.
    Grieder, C., Dhillon, B., Schipprack, W., Melchinger, A.: Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance. Theor. Appl. Genet. 124(6), 971–980 (2012)CrossRefGoogle Scholar
  25. 25.
    Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L.: Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 118(1–4), 173–182 (2007)CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008)CrossRefGoogle Scholar
  27. 27.
    Barker, A.V., Pilbeam, D.J.: Handbook of plant nutrition. CRC/Taylor & Francis, Boca Raton (FL) (2014)Google Scholar
  28. 28.
    Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014)CrossRefGoogle Scholar
  29. 29.
    Romero-Güiza, M.S., Vila, J., Mata-Alvarez, J., Chimenos, J.M., Astals, S.: The role of additives on anaerobic digestion: a review. Renew. Sustain. Energy Rev. 58, 1486–1499 (2016)CrossRefGoogle Scholar
  30. 30.
    Viswanath, P., Devi, S.S., Nand, K.: Anaerobic digestion of fruit and vegetables processing wastes for biogas production. Bioresour. Technol. 40(1), 43–48 (1992)CrossRefGoogle Scholar
  31. 31.
    Gunaseelan, V.N.: Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg. 13, 83–114 (1997)CrossRefGoogle Scholar
  32. 32.
    Shokri, S.: Biogas technology, applications, perspectives and implications. Int. J. Agric. Sci. Res. 2, 53–60 (2011)Google Scholar
  33. 33.
    Lin, J., Zuo, J., Gan, L., Li, P., Liu, F., Wang, K., Chen, L., Gan, H.: Effects of mixture ratio on anaerobic co-digestion with fruit and vegetables waste and food waste of China. J. Environ. Sci. 23(8), 1403–1408 (2011)CrossRefGoogle Scholar
  34. 34.
    Sitorus, B., Sukandar, S.D., Panjaitan: Biogas recovery from anaerobic digestion process of mixed fruit–vegetables wastes. Energy Proc. 32, 176–182 (2013)CrossRefGoogle Scholar
  35. 35.
    Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas handbook, University of Southern Denmark, Esbjerg (2008)Google Scholar
  36. 36.
    Deublein, D., Steinhauser, A.: Biogas from waste and renewable resources: an introduction, 2nd revised and expanded edn. Wiley, Weinheim (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Agricultural, Food and Environmental EngineeringMendel University in Brno, Czech RepublicBrnoCzech Republic
  2. 2.Section of Microbiology, Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  3. 3.Department of Geology and Pedology, Mendel University in Brno, Czech RepublicBrnoCzech Republic
  4. 4.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  5. 5.Agriculture Research, Ltd.TroubskoCzech Republic

Personalised recommendations