Advertisement

A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction

  • Giuseppina Adiletta
  • Paola BrachiEmail author
  • Evelina Riianova
  • Alessio Crescitelli
  • Michele Miccio
  • Natalia Kostryukova
Original Paper
  • 25 Downloads

Abstract

The valorization of sugar beet pulp (SBP) from sugar industry as a source of valuable substances has been taken in consideration in this work. In particular, the eco-friendly extraction of pectins with citric acid has been adopted as a preliminary step in a simplified biorefinery concept where the pectin-free solid is subsequently subjected to a torrefaction treatment for its upgrading into a commodity solid biofuel. An extensive physicochemical characterization of the raw feedstock and the isolated pectins has also been performed, which may be useful to identify suitable application routes. Results show that the extraction conditions [1.5 pH, 90 °C, 4 h contact time and SBP-to-solvent ratio of 1:30 (g/mL)] selected in this work allow obtaining a relatively high yield (25% wt, db) of high methoxyl pectins (with some impurities), which exhibit the same colorimetric characteristics of commercial citrus pectins and are not conducive to microbial growth. A further purification step of isolated pectins is required to improve the emulsifying properties.

Graphical Abstract

Keywords

Sugar beet pulp Agro-industrial residues Bio-chemicals Bio-fuels Citric acid extraction Pectin 

Abbreviations

SBP

Sugar beet pulp

PE-SBP

Pectin-extracted sugar beet pulp

HHV

Higher heating value

LHV

Lower heating value

TA

Titratable acidity

FTIR

Fourier-transform infrared spectroscopy

SEM-EDX

Scanning electron microscopy-energy-dispersive X-Ray

DE

Esterification degree

O/W

Oil-in-water

EA

Emulsifying activity

ELV

Emulsified layer volume

WV

Whole sample volume

LMP

Low Methoxyl Pectin

HMP

High methoxyl pectin

AIR

Alcohol-insoluble residue

Notes

Acknowledgements

The authors are grateful to the Dr. Luigi Vertuccio (University of Salerno) for the valuable support to perform FT-IR analyses and the Dr. Cortese Luciano (IRC-CNR) for providing expertise and access to SEM–EDX facilities. The financial support from the Russian Ministry of Education is acknowledged (Grant No. 6444280-4403ES/1 of September 2, 2016). Special thanks are given to COPROB (Cooperativa Produttori Bieticoli) for the feedstock supply.

References

  1. 1.
    Brachi, P., Chirone, R., Miccio, F., Miccio, M., Picarelli, A., Ruoppolo, G.: Fluidized bed co-gasification of biomass and polymeric wastes for a flexible end-use of the syngas: focus on bio-methanol. Fuel 128, 88–98 (2014)CrossRefGoogle Scholar
  2. 2.
    Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G.: Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed bed reactor. Energy Fuels 30, 4858–4868 (2016)CrossRefGoogle Scholar
  3. 3.
    Cherubini, F.: The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Clark, J.H., Deswarte, F.E.I., Farmer, T.J.: The integration of green chemistry into future biorefineries. Biofuels Bioprod. Biorefin. 3, 72–90 (2009)CrossRefGoogle Scholar
  6. 6.
    Zacharof, M.P.: Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valorization 8, 1011–1102 (2017)CrossRefGoogle Scholar
  7. 7.
    Statista, the statistic portal: Sugar production worldwide from 2009/2010 to 2017/18 (in million metric tons) https://www.statista.com/statistics/249679/total-production-of-sugar-worldwide/. Accessed 17 Dec 2017
  8. 8.
    Nhan Pham, S., Industry report, 2014. http://fpts.com.vn/FileStore2/File/2014/07/03/Sugar%20industry%20report.pdf. Accessed 17 Dec 2017
  9. 9.
    Řezbová, H., Belová, A., Škubna, O.: Sugar beet production in the European Union and their future trends. Agris On-line Papers Econ Inform, 5, 165–178: (2013). http://ageconsearch.umn.edu/bitstream/162299/2/agris_on-line_2013_4_rezbova_belova_skubna.pdf. Accessed 17 Dec 2017
  10. 10.
    Thibault, J.F., Bonnin, E.: New ways to add value to sugar beet pulp. Proceedings of the 2000 sugar processing research conference, Porto, Portugal, April 9–12, 2000. https://archive.org/stream/CAT10399044009/CAT10399044009_djvu.txt. Accessed 16 Jan 2018
  11. 11.
    Edwards, M.C., De Crescenzo Henriksen, E., Yomano, L.P., Gardner, B.C., Sharma, L.N., Ingram, L.O., Peterson, J.D.: Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl. Environ. Microbiol. 77, 5184–5519 (2011)CrossRefGoogle Scholar
  12. 12.
    Šereš, Z., Gyura, J., Filipović, N., Simović, D.S.: Application of decolorization on sugar beet pulp in bread production. Eur. Food Res. Technol. 221, 54–60 (2005)CrossRefGoogle Scholar
  13. 13.
    Özbaş, K.E., Özbaş, O.O.: Sugar beet pulp as biomass. Sugar Ind./Zuckerind. 142, 29–32 (2017)Google Scholar
  14. 14.
    Kühnel, S., Schols, H.A., Gruppen, H.: Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion. Biotechnol. Biofuels 4, 1–14 (2011)CrossRefGoogle Scholar
  15. 15.
    Brachi, P., Riianova, E., Miccio, M., Miccio, F., Ruoppolo, G., Chirone, R.: Valorization of sugar beet pulp via torrefaction with a focus on the effect of the preliminary extraction of pectins. Energy Fuels 31, 9595–9604 (2017)CrossRefGoogle Scholar
  16. 16.
    Caffall, K.H., Mohnen, D.: The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009)CrossRefGoogle Scholar
  17. 17.
    Wüstenberg, T.: General overview of food hydrocolloids. In: Cellulose and cellulose derivatives in the food industry: Fundamentals and applications, pp. 1–68. Wiley, Weinheim (2014)Google Scholar
  18. 18.
    Zykwinska, A., Boiffard, M.H., Kontkanen, H., Buchert, J., Thibault, J.F., Bonnin, E.: Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 56, 8926–8935 (2008)CrossRefGoogle Scholar
  19. 19.
    Grassino, A.N., Halambek, J., Djakovic, S., Brncic, S.R., Dent, M., Grabaric, Z.: Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll. 52, 265–274 (2016)CrossRefGoogle Scholar
  20. 20.
    Yapo, B.M., Robert, C., Etienne, I., Wathelet, B., Paquot, M.: Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 100, 1356–1364 (2007)CrossRefGoogle Scholar
  21. 21.
    Chandel, V., Vaidya, D., Kaushal, M., Gupta, A., Verna, A.K.: Standardization of eco-friendly technique for extraction of pectin from apple pomace Indian. J. Nat. Prod. Resour. 7, 69–73 (2016)Google Scholar
  22. 22.
    Donaghya, J.A., McKay, A.M.: Pectin extraction from citrus peel by polygalacturonase produced on whey. Bioresour. Technol. 47, 25–28 (1994) (1994)CrossRefGoogle Scholar
  23. 23.
    Ptichkinaa, N.M., Markinaa, O.A., Rumyantseva, G.N.: Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocoll. 22, 192–195 (2008)CrossRefGoogle Scholar
  24. 24.
    Maran, J. P., Sivakumara, V., Thirugnanasambandhama, V., Sridhar, R.: Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr. Polym. 97, 703–709 (2013)CrossRefGoogle Scholar
  25. 25.
    Panchev, I., Kirchev, N., Kratchanov, C.: Improving pectin technology. Int. J. Food Sci. Tech. 23, 337–341 (1988)CrossRefGoogle Scholar
  26. 26.
    Oosterveld, A., Beldman, G., Schols, H.A., Voragen, A.G.J.: Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydr. Res. 328, 185–197 (2000)CrossRefGoogle Scholar
  27. 27.
    Shin, H.H., Kim, C.T., Cho, Y.J., Hwang, J.K.: Analysis of extruded pectin extraction from apple pomace by response surface methodology. Food Sci. Biotechnol. 14, 28–31 (2005)Google Scholar
  28. 28.
    Ukiwe, L.N., Alinnor, J.I.: Extraction of pectin from pineapple (Ananas comosus) peel using inorganic/organic acids and aluminium chloride. Fresh Produce 5, 80–83 (2011)Google Scholar
  29. 29.
    Ma, S., Yu, S., Zheng, X., Wang, X., Bao, Q., Guo, X.: Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr. Polym. 98, 750–753 (2013)CrossRefGoogle Scholar
  30. 30.
    Chen, H., Fu, X., Luo, Z.: Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chem. 168, 302–310 (2015)CrossRefGoogle Scholar
  31. 31.
    Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G.: Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Process. Technol. 154, 243–250 (2016)CrossRefGoogle Scholar
  32. 32.
    Mæhre, H.K., Dalheim, L., Edvinsen, G.k., Elvevoll, E.O., Jensen, I.J.: Protein determination-method matters. Foods 7, 1–11 (2018)Google Scholar
  33. 33.
    Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002)CrossRefGoogle Scholar
  34. 34.
    AOAC. Official methods of analysis (15th ed.). Association of Official Analytical Chemist, Arlington. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (1997). Accessed 16 Jan 2018
  35. 35.
    Adiletta, G., Russo, P., Proietti, N., Capitani, D., Mannina, L., Crescitelli, A., Di Matteo, M.: Characterization of pears during drying by conventional technique and portable non Invasive NMR. Chem. Eng. Trans. 44, 151–156 (2015)Google Scholar
  36. 36.
    Riianova, E.: The technological aspects of sugar factory waste recycling for pectin production, Master Thesis (in Russian). Ufa State Aviation Technical University, (2017), p. 148Google Scholar
  37. 37.
    Casas-Orozco, D., Luz Villa, A., Bustamante, F., González, L.M.: Process development and simulation of pectin extraction from orange peels. Food Bioprod. Process. 96, 86–98 (2015)CrossRefGoogle Scholar
  38. 38.
    Concha, J., Weinstein, C., Zúñiga, M.E.: Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line. Front. Chem. Sci. Eng. 7, 482–489 (2013)CrossRefGoogle Scholar
  39. 39.
    Filippov, M.P., Shkolenko, G.A., Kohn, R.: Determination of the esterification degree of the pectin of different origin and composition by the method of infrared spectroscopy. Chem. Zvesti 32, 218–222 (1978)Google Scholar
  40. 40.
    Mohamed, H.A., Mohamed, B.E.W.: Fractionation and physicochemical properties of pectic substances extracted from grapefruit peels. J. Food Process. Technol. 6, 1–6 (2015)MathSciNetGoogle Scholar
  41. 41.
    Adiletta, G., Russo, P., Crescitelli, A., Di Matteo, M.: Combined pretreatment for enhancing quality of dried and rehydrated eggplant. Food Bioprocess. Tech. 9, 1912–1923 (2016)CrossRefGoogle Scholar
  42. 42.
    Brasiello, A., Crescitelli, S., Adiletta, G., Di Matteo, M., Albanese, D.: Mathematical model with shrinkage of an eggplant drying process. Chem. Eng. Trans. 24, 451–456 (2011)Google Scholar
  43. 43.
    Dalev, P.G., Simeonova, L.S.: Emulsifying properties of protein–pectin complexes and their use in oil-containing foodstuffs. J. Sci. Food Agric. 68, 203–206 (1995)CrossRefGoogle Scholar
  44. 44.
    Yılgın, M., Duranay, D., Pehlivan, N.: D.: Co-pyrolysis of lignite and sugar beet pulp. Energ. Convers. Manage. 51, 1060–1064 (2010)CrossRefGoogle Scholar
  45. 45.
    Sakac, M.B., Pericin, D.M., Mandic, A.I., Kormanjos, S.M.: Antioxidant properties of ethanolic extract of sugar beet pulp. Acta Period. Technol. 35, 255–264 (2004)CrossRefGoogle Scholar
  46. 46.
    Li, D., Du, G., Jing, W., Li, J., Yan, J., Liu, Z.: Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr. Polym. 129, 108–114 (2015)CrossRefGoogle Scholar
  47. 47.
    Marsiglia, D.E., Ojeda, kA., Ramírez, M.C., Sánchez, E.: Pectin extraction from cocoa pod husk (Theobroma cacao L.) by hydrolysis with citric and acetic acid. Int. J. Chemtech. Res. 9, 497–507 (2016)Google Scholar
  48. 48.
    Gandolfi, S., Ottolina, G., Riva, S., Pedrocchi Fantoni, G., Patel, I.: Complete chemical analysis of carmagnola hemp hurds and structural features of its components. BioResources, 8, 2641–2656 (2013)CrossRefGoogle Scholar
  49. 49.
    Naumann, D.: Infrared spectroscopy in microbiology. Encycl. Anal. Chem. 2000, 102–131 (2000)MathSciNetGoogle Scholar
  50. 50.
    Kačuráková, M., Belton, P.S., Wilson, R.G., Hirsch, J., Ebringerová, A.: Hydration properties of xylan-type structures: an FTIR study of xylooligosaccharides. Sci. Food Agric 77, 38–44 (1998)CrossRefGoogle Scholar
  51. 51.
    Aguirre, M.J., Isaacs, M., Matsuhiro, B., Mendoza, L., Zúñiga, E.A.: Characterization of a neutral polysaccharide with antioxidant capacity from red wine. Carbohydr. Res. 344, 1095–1101 (2009)CrossRefGoogle Scholar
  52. 52.
    Mondal, S.K., Ray, B., Thakur, S., Ghosal, P.K.: Isolation and characterization of pectic polysaccharides from the fruits of Naringi crenulata. Indian J. Chem. 42, 437–442 (2003)Google Scholar
  53. 53.
    Sun, R., Hughes, S.: Extraction and physico-chemical characterization of pectins from sugar beet pulp. Polym. J. 30, 671–677 (1998)CrossRefGoogle Scholar
  54. 54.
    Deng, J., Shi, Z.J., Li, X.Z., Liu, H.M.: Soluble polysaccharides isolation and characterization from rabbiteye blueberry (Vaccinium ashei) fruits. BioResources 8, 405–419 (2012)CrossRefGoogle Scholar
  55. 55.
    Flutto, L. Pectin-properties and determination. In: Encyclopedia of food sciences and nutrition (Second Edition), pp. 4440–4449. Academic Press, Cambridge (2003)Google Scholar
  56. 56.
    Quoc, L.P.T., Huyen, V.T.N., Hue, L.T.N., Hue, N.T.H., Thuan, N.H.D., Tam, N.T.T., Thuan, N.N., Duy, T.H.: Extraction of pectin from pomelo (Citrus maxima) peels with the assistance of microwave and tartaric acid. Int. Food Res. J. 22, 1637–1641 (2015)Google Scholar
  57. 57.
    Müller-Maatsch, J., Bencivenni, M., Caligiani, A., Tedeschi, T., Bruggeman, G., Bosch, M., Petrusan, J., Van Droogenbroeck, B., Elstf, k, Sforza, S.: Pectin content and composition from different food waste streams. Food Chem. 201, 37–45 (2016)CrossRefGoogle Scholar
  58. 58.
    Fundamentals of Water Activity, DECAGON. http://www.graintec.com.au/media/12856/Fundamentals.pdf. Accessed 20 Dec 2017
  59. 59.
    Yang, J.S., Mu, T.H., Ma, M.M.: Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 244, 197–205 (2018)CrossRefGoogle Scholar
  60. 60.
    Sharma, B.R., Dhuldhoya, N.C., Merchant, S.U., Merchant, U.C.: An overview of pectins. Times Food Process J 4, 44–51 (2006)Google Scholar
  61. 61.
    Waldron, K.W., Selvendran, R.R.: Composition of the cell walls of differenta sparagus (Asparagus officinalis) tissues. Physiol. Plant. 80, 568–575 (1990)CrossRefGoogle Scholar
  62. 62.
    Lampitt, L.H., Money, R.W., Judge, B.E., Urie, A.: Pectin studies. Part I. Method of purification. J. Chem. Technol. Biotechnol. 66, 121–124 (1947)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of SalernoFiscianoItaly
  2. 2.Institute for Research on CombustionNational Research CouncilNapoliItaly
  3. 3.Republic of BashkortostanUfa State Aviation Technical UniversityUfaRussian Federation
  4. 4.Institute for Microelectronics and Microsystems (IMM) of the National Council of Research (CNR)NapoliItaly

Personalised recommendations