Reactivity Alteration of Granulated Blast Furnace Slag by Mechanical Activation for High Volume Usage in Portland Slag Cement

  • Rashmi SinglaEmail author
  • Sanjay Kumar
  • Thomas C. Alex
Original Paper


Augmenting granulated blast furnace slag (GBFS) content in Portland Slag Cement (PSC) beyond the conventional limit of 70% is the stimulus for this study. Such enhancement other than bringing down the carbon footprint of cement conserves natural resources. However, beyond 70% slag incorporation, early strength gain of PSC is meagre because of its low reactivity. This study explores mechanical activation (MA) of GBFS to alter its reactivity, and thereby raising the possibility of increased slag incorporation in PSC. MA of slag is carried in an eccentric vibration mill. Formulations with different MA slag contents and clinker are studied in terms of heat of hydration (using isothermal conduction calorimetry) and compressive strength (CS). CS of clinker–slag formulations augmented with the extent of MA. Hydration behaviour of these blends i.e. increased heat evolution, accelerated reactions etc. is in agreement with CS values. X-ray diffraction and TG–DTG employed as complimentary tools to comprehend the hydration process corroborate with CS results, and hydration characteristics. Thus, MA can be used to enhance the hydration characteristics (reactivity) of GBFS, and henceforth its content in PSC. Sufficiently activated slag incorporation even up to 90% yields comparable strength than commercial PSC at all ages of curing.


Granulated blast furnace slag Portland slag cement Mechanical activation Compressive strength Heat of hydration 



Authors gratefully acknowledge Dr. Indranil Chattoraj, Director, CSIR-National Metallurgical Laboratory (CSIR-NML) for his encouragement and permission to publish this paper. Authors would like to thank Dr. Navneet Singh Randhawa for facilitating TG/DTG experiments.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Divsholi, B.S., Lim, T.Y.D., Teng, S.: Durability properties and microstructure of ground granulated blast furnace slag cement concrete. Int. J. Concr. Struct. Mater. 8, 157–164 (2014). CrossRefGoogle Scholar
  2. 2.
    Bellmann, F., Stark, J.: Activation of blast furnace slag by a new method. Cem. Concr. Res. 39, 644–650 (2009). CrossRefGoogle Scholar
  3. 3.
    Mo, K.H., Alengaram, U.J., Jumaat, M.Z.: Utilization of ground granulated blast furnace slag as partial cement replacement in lightweight oil palm shell concrete. Mater. Struct. 48, 2545–2556 (2015). CrossRefGoogle Scholar
  4. 4.
    Carbon emissions in the Cement sector in India, Accessed 26 July 2018
  5. 5.
    Gowmekha, R., Sabarija, A.M., Jagadesh, P.: Influence of GGBS on the performance of high performance concrete. Int. Res. J. Eng. Technol. 5, 450–456 (2018)Google Scholar
  6. 6.
    Nochaiya, T., Wongkeo, W., Pimraksa, K., Chaipanich, A.: Microstructural, physical, and thermal analyses of Portland cement-fly ash-calcium hydroxide blended pastes. J. Therm. Anal. Calorim. 100, 101–108 (2010). CrossRefGoogle Scholar
  7. 7.
    Cabrera-Madrid, J.A., Escalante-García, J.I., Castro-Borges, P.: Compressive strength of concretes with blast furnace slag. Re-visited state-of-the-art. ALCONPAT J. 6, 64–83 (2016)CrossRefGoogle Scholar
  8. 8.
    Allahverdi, A., Ahmadnezhad, S.: Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technol. 251, 41–51 (2014)CrossRefGoogle Scholar
  9. 9.
    Ballim, Y., Graham, P.C.: The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Mater. Struct. 42, 803–811 (2009). CrossRefGoogle Scholar
  10. 10.
    Wu, X., Roy, D.M., Langton, C.A.: Early stage hydration of slag-cement. Cem. Concr. Res. 13, 277–286 (1983)CrossRefGoogle Scholar
  11. 11.
    Bouaziz, A., Hamzaoui, R., Guessasma, S., Lakhal, R., Achoura, D., Leklou, N.: Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste. Powder Technol. 308, 37–46 (2017). CrossRefGoogle Scholar
  12. 12.
    Li, Y., Guo, W., Li, H.: Quantitative analysis on ground blast furnace slag behavior in hardened cement pastes based on backscattered electron imaging and image analysis technology. Constr. Build. Mater. 110, 48–53 (2016). CrossRefGoogle Scholar
  13. 13.
    Ogirigbo, O.R., Black, L.: Influence of slag composition and temperature on the hydration and microstructure of slag blended cements. Constr. Build. Mater. 126, 496–507 (2016). CrossRefGoogle Scholar
  14. 14.
    Taylor, H.: Cement Chemistry. Thomas Telford Publishing, London (1998)Google Scholar
  15. 15.
    IS 455: Portland slag cement—specification [CED 2: Cement and Concrete] (1989)Google Scholar
  16. 16.
    Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T.C., Ravi Kumar, B., Das, S.K., Mehrotra, S.P.: Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Compos. 30, 679–685 (2008). CrossRefGoogle Scholar
  17. 17.
    Kumar, R., Kumar, S., Badjena, S., Mehrotra, S.P.: Hydration of mechanically activated granulated blast furnace slag. Metall. Mater. Trans. B 36, 873–883 (2005). CrossRefGoogle Scholar
  18. 18.
    Kriskova, L., Pontikes, Y., Cizer, Ö, Mertens, G., Veulemans, W., Geysen, D., Jones, P.T., Vandewalle, L., Van Balen, K., Blanpain, B.: Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 42, 778–788 (2012). CrossRefGoogle Scholar
  19. 19.
    Kumar, S., Kumar, R., Bandopadhyay, A.: Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour. Conserv. Recycl. 48, 301–314 (2006). CrossRefGoogle Scholar
  20. 20.
    Wan, H., Shui, Z., Lin, Z.: Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cem. Concr. Res. 34, 133–137 (2004). CrossRefGoogle Scholar
  21. 21.
    Kumar, S., Mucsi, G., Kristály, F., Pekker, P.: Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Adv. Powder Technol. 28, 805–813 (2017). CrossRefGoogle Scholar
  22. 22.
    Kumar, S., Bandopadhyay, A., Rajinikanth, V., Alex, T.C., Kumar, R.: Improved processing of blended slag cement through mechanical activation. J. Mater. Sci. 39, 3449–3452 (2004). CrossRefGoogle Scholar
  23. 23.
    Sobolev, K., Lin, Z., Cao, Y., Sun, H., Flores-Vivian, I., Rushing, T., Cummins, T., Weiss, W.J.: The influence of mechanical activation by vibro-milling on the early-age hydration and strength development of cement. Cem. Concr. Compos. 71, 53–62 (2016). CrossRefGoogle Scholar
  24. 24.
    Sobolev, K.: Mechano-chemical modification of cement with high volumes of blast furnace slag. Cem. Concr. Compos. 27, 848–853 (2005). CrossRefGoogle Scholar
  25. 25.
    IS 4031: Part 1 to 13: Methods of physical test for hydraulic cement (1988)Google Scholar
  26. 26.
    Juhasz, A.Z., Opoczky, L.: Mechanical Activation of Minerals by Grinding: Pulverizing and Morphology of Particles. Ellis Horwood Limited, New York (1994)Google Scholar
  27. 27.
    Zhou, J., Guang, Y., van Breugel, K.: Hydration of Portland cement blended with blast furnace slag at early age. Second International on Symposium on Advances in Concrete science and Engineering, RILEM Publications, Quebec City (2006)Google Scholar
  28. 28.
    Richardson, I.G., Wilding, C.R., Dickson, M.J.: The hydration of blast furnace slag cements. Adv. Cem. Res. 2, 147–157 (1989). CrossRefGoogle Scholar
  29. 29.
    Gruyaert, E., Robeyst, N., De Belie, N.: Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 102, 941–951 (2010). CrossRefGoogle Scholar
  30. 30.
    Escalante-Garcia, J.I., Sharp, J.H.: The effect of temperature on the early hydration of Portland cement and blended cements. Adv. Cem. Res. 12, 121–130 (2000). CrossRefGoogle Scholar
  31. 31.
    Meinhard, K., Lackner, R.: Multi-phase hydration model for prediction of hydration-heat release of blended cements. Cem. Concr. Res. 38, 794–802 (2008). CrossRefGoogle Scholar
  32. 32.
    Kumar, S., Kumar, R.: Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram. Int. 37, 533–541 (2011). CrossRefGoogle Scholar
  33. 33.
    Escalante-Garcia, J.I., Sharp, J.H.: Effect of temperature on the hydration of the main clinker phases in portland cements: part II, blended cements. Cem. Concr. Res. 28, 1259–1274 (1998)CrossRefGoogle Scholar
  34. 34.
    Mokhtar, M., Inayat, A., Ofili, J., Schwieger, W.: Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: a comparative study. Appl. Clay Sci. 50, 176–181 (2010). CrossRefGoogle Scholar
  35. 35.
    Ogirigbo, O.R.: Influence of Slag composition and temperature on the hydration and performance of slag blends in chloride environments (2016)Google Scholar
  36. 36.
    Taylor, R., Richardson, I.G., Brydson, R.M.D.: Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 40, 971–983 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CSIR- National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations