Advertisement

Lignocellulosic Materials for Fiber Cement Production

  • Julia Naves Teixeira
  • Danillo Wisky Silva
  • Alan Pereira Vilela
  • Holmer Savastano Junior
  • Livia Elisabeth Vasconcellos de Siqueira Brandão Vaz
  • Rafael Farinassi Mendes
Original Paper
  • 11 Downloads

Abstract

Among the products used in the construction industry, cement composites with lignocellulosic reinforcement have been highlighted in the research. These materials have advantageous characteristics, such as being lighter and more economical. This work aimed at evaluating the effect of different lignocellulosic materials use on the physical, mechanical, and durability properties of fiber cement. The composites were produced in laboratory scale by extrusion. The formulation consisted of 5% lignocellulosic material, 30% agricultural limestone, 1% hydroxypropylmethylcellulose, and 1% polyether carboxylic additive and the remainder of the material was Portland cement (CPV-ARI) to complete the formulation. The samples were cured for 2 days in a saturated environment and for 5 days in thermal curing. Fiber cement properties such as bulk density, water absorption, apparent porosity, modulus of elasticity, modulus of rupture, and tenacity after curing and after 200 and 400 aging cycles were evaluated. Eucalyptus, coffee husk, banana pseudostem and coconut shell particles could be used for fiber cement production since they met the marketing standards after the aging process.

Keywords

Cementitious composites Morphology Chemical composition Physical–mechanical properties Accelerated aging 

Abbreviations

ABNT

Associação brasileira de normas técnicas (Brazilian Association for Technical Standards)

AP

Apparent porosity

ASTM

American Society for Testing and Materials

BD

Bulk density

MOE

Modulus of elasticity

MOR

Modulus of rupture

SE

Specific energy

UFLA

Federal University of Lavras

WA

Water absorption

Notes

Acknowledgements

The authors would like to thank the Minas Gerais State Agency for Research and Development (FAPEMIG), the National Council of Technological and Scientific Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and the Under graduate Program in Biomaterials Engineering of the Federal University of Lavras-MG, Brazil (UFLA).

References

  1. 1.
    ABNT: Associação brasileira de normas técnicas: NBR 11941: densidade básica da madeira. ABNT, Rio de Janeiro (2003)Google Scholar
  2. 2.
    ABNT: Associação brasileira de normas técnicas: NBR 12800: telha de fibrocimento, tipo pequenas ondas. ABNT, Rio de Janeiro (1993)Google Scholar
  3. 3.
    ABNT: Associação brasileira de normas técnicas: NBR 13999: papel, cartão, pastas celulósicas e madeira—Determinação do resíduo (cinza) após a incineração a 524 °C. ABNT, Rio de Janeiro (2003)Google Scholar
  4. 4.
    ABNT: Associação brasileira de normas técnicas: NBR 14853: madeira: determinação do material solúvel em etanol-tolueno, em diclorometano e em acetona. ABNT, Rio de Janeiro (2010)Google Scholar
  5. 5.
    ABNT: Associação brasileira de normas técnicas: NBR 15498: placa de fibrocimento sem amianto: requisitos e métodos de ensaio. ABNT, Rio de Janeiro (2007)Google Scholar
  6. 6.
    ABNT: Associação brasileira de normas técnicas: NBR 7989: pasta celulósica e madeira: determinação de lignina insolúvel em ácido. ABNT, Rio de Janeiro (2010)Google Scholar
  7. 7.
    Agopyan, V., et al.: Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cem. Concr. Compos. 27(5), 527–536 (2005)CrossRefGoogle Scholar
  8. 8.
    Aguiar, J., Camões, A., Fangueiro, R.: Materiais de construção sustentáveis. In: Anais 1 Congresso Luso-Brasileiro de Materiais de Construção Sustentáveis, Minho. Universidade do Minho, pp. 263–296 (2014)Google Scholar
  9. 9.
    Almeida, A.E.F.S., et al.: Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem. Concr. Compos. 42, 49–58 (2013)CrossRefGoogle Scholar
  10. 10.
    American Society for Testing and Materials—ASTM 949-81: Test Method for Dry and Wet Bulk Density, Water Absorption, and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete. ASTM, West Conshohocken (1981)Google Scholar
  11. 11.
    Ardanuy, M., et al.: Nanofibrillated cellulose (nfc) as a potential reinforcement for high performance cement mortar composites. BioResources 7, 3883–3894 (2012)Google Scholar
  12. 12.
    Azzini, A., et al.: Densidade básica do colmo e fibras celulósicas em progênies de bambusa tuldoides munro. Bragantia 47(2), 239–246 (1988)CrossRefGoogle Scholar
  13. 13.
    Baeza, F.J., et al.: Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 51, 1085–1094 (2013)CrossRefGoogle Scholar
  14. 14.
    Bentur, A., Akers, S.A.S.: The microstructure and ageing of cellulose fibre reinforced cement composites cured in a normal environment. Int. J. Cem. Compos. Lightweight Concr. 11(2), 99–109 (1989)CrossRefGoogle Scholar
  15. 15.
    Cevallos, O.A., Olivito, R.S.: Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. B 69, 256–266 (2015)CrossRefGoogle Scholar
  16. 16.
    Chafei, S., et al.: Optimizing the formulation of flax fiber-reinforced cement composites. Constr. Build. Mater. 54, 59–64 (2014)Google Scholar
  17. 17.
    Choi, J.I., et al.: Composite properties of high-strength polyethylene fiber-reinforced cement and cementless composites. Compos. Struct. 138, 116–121 (2016)CrossRefGoogle Scholar
  18. 18.
    Correia, V.C., Santos, S.F., Savastano Júnior, H.: Effect of the accelerated carbonation in fibrecement composites reinforced with eucalyptus pulp and nanofibrillated cellulose. Int. J. Civil Archit. Struct. Constr. Eng. 9(1), 7–10 (2015)Google Scholar
  19. 19.
    da Correia, V.C., et al.: Potential of bamboo organosolv pulp as a reinforcing element in fiber–cement materials. Constr. Build. Mater. 72, 65–71 (2014)CrossRefGoogle Scholar
  20. 20.
    Ferreira, A.A., Silveira, A.A., Dal Molin, D.C.: C. A cinza da casca de arroz: possibilidades de utilização como insumo na produção de materiais de construção. In: Anais Encontro nacional sobre edificações e comunidades sustentáveis, ANTAC, Canela, pp. 293–298 (1997)Google Scholar
  21. 21.
    Fonseca, C.S., et al.: Micro/nanofibrilas celulósicas de eucalyptus em fibrocimentos extrudados. Cerne 22(1), 59–68 (2016)CrossRefGoogle Scholar
  22. 22.
    Goodrich, T., et al.: High-temperature mechanical properties and thermal recovery of balsa wood. J. Wood Sci. 56(6), 437–443 (2010)CrossRefGoogle Scholar
  23. 23.
    Hannant, D.J., Hughes, D.C.: Durability of cement sheets reinforced with layers of continuous networks of fibrillated polypropylene fil. In: Symposium of the 3rd International Developments in Fibre Reinforced Cement and Concrete, Rilem, Sheffield (1986)Google Scholar
  24. 24.
    Jo, B.-W., Chakraborty, S., Lee, Y.S.: Hydration study of the polymer modified jute fibre reinforced cement paste using analytical techniques. Constr. Build. Mater. 101(1), 166–173 (2015)CrossRefGoogle Scholar
  25. 25.
    Jo, B.-W., Chakraborty, S., Yoon, K.: W. A hypothetical model based on effectiveness of combined alkali and polymer latex modified jute fibre in controlling the setting and hydration behaviour of cement. Constr. Build. Mater. 68, 1–9 (2014)CrossRefGoogle Scholar
  26. 26.
    Kawabata, C.Y., de Castro, R.C.: Savastano Júnior, H. Índices de conforto térmico e respostas fisiológicas de bezerros da Raça Holandesa em bezerreiros individuais com diferentes coberturas. Engenharia Agrícola 25(3), 598–607 (2005)CrossRefGoogle Scholar
  27. 27.
    Mohr, B.J., Biernacki, J.J., Kurtis, K.E.: Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cem. Concr. Res. 36(7), 1240–1251 (2006)CrossRefGoogle Scholar
  28. 28.
    Mohr, B.J., Biernacki, J.J., Kurtis, K.E.: Supplementary cementitious materials for mitigating degradation of kraft pulp fibrecement composites. Cem. Concr. Res. 37(11), 1531–1543 (2007)CrossRefGoogle Scholar
  29. 29.
    Nacif, G.L., et al.: Investigations on cementitious composites based on rubber particle waste additions. Mater. Res., São Carlos 16(2), 259–268 (2013)CrossRefGoogle Scholar
  30. 30.
    Nanko, H., Asano, S., Ohsawa, J. Shrinkage behavior of pulp fibers during drying. In: Proceedings of the first Tappi International Paper Physics Conference, Kona, pp. 365–374 (1991)Google Scholar
  31. 31.
    Sadiq, K.M., Bzeni, D.K.H., Shai, K.H.: Deflection hardening behaviour of jute strands reinforced lightweight cementitious composite. Constr. Build. Mater. 96, 102–111 (2015)CrossRefGoogle Scholar
  32. 32.
    Santos, S.F., et al.: Supercritical carbonation treatment on extruded fibre–cement reinforced with vegetable fibres. Cem. Concr. Compos. 56, 84–94 (2015)CrossRefGoogle Scholar
  33. 33.
    Savastano, H. Jr., Santos, S.F., Agopyan, V.: Sustainability of Construction Materials. Elsevier, Amsterdam (2009)Google Scholar
  34. 34.
    Sellami, A., Merzoud, M., Amziane, S.: Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 47(11), 17–24 (2013)Google Scholar
  35. 35.
    Soltana, D.G., et al.: Introducing a curauá fiber reinforced cement-based composite with strain-hardening behavior. Ind. Crops Prod. 103, 1–12 (2012)CrossRefGoogle Scholar
  36. 36.
    Sudin, R., Swamy, N.: Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 41(21), 6917–6924 (2006)CrossRefGoogle Scholar
  37. 37.
    Tonoli, G.H.D., et al.: Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crops Prod. 31(2), 225–232 (2010)CrossRefGoogle Scholar
  38. 38.
    Tonoli, G.H.D., et al.: Isocyanate-treated cellulose pulp and its effect on the alkali resistance and performance of fiber cement composites. Holzforschung 67(8), 853–861 (2013)CrossRefGoogle Scholar
  39. 39.
    Tonoli, G.H.D., et al.: Processing and dimensional changes of cement based composites reinforced with surface-treated cellulose fibres. Cem. Concr. Compos. 37, 68–75 (2013)CrossRefGoogle Scholar
  40. 40.
    Torgal, F.P., Jalali, S.: Cementitious building materials reinforced with vegetable fibres: a review. Constr. Build. Mater. 25, 575–581 (2011)CrossRefGoogle Scholar
  41. 41.
    Wei, J., Ma, S., Thomas, D.G.: Correlation between hydration of cement and durability of natural fibre-reinforced cement composites. Corros. Sci. 106, 1–15 (2016)CrossRefGoogle Scholar
  42. 42.
    Xie, X., et al.: Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. B 78, 153–161 (2015)CrossRefGoogle Scholar
  43. 43.
    Yoo, D.Y., et al.: Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. 174, 375–388 (2017)CrossRefGoogle Scholar
  44. 44.
    Zambrzycki, G.C., do Vale, A.T., de Dantas, V.F.S.: Potencial energético dos resíduos da cultura do milho (Zea mays). Evidência 13(2), 153–164 (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Julia Naves Teixeira
    • 1
  • Danillo Wisky Silva
    • 1
  • Alan Pereira Vilela
    • 1
  • Holmer Savastano Junior
    • 2
  • Livia Elisabeth Vasconcellos de Siqueira Brandão Vaz
    • 1
  • Rafael Farinassi Mendes
    • 1
  1. 1.Engineering BiomaterialsFederal University of Lavras (UFLA)LavrasBrazil
  2. 2.Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São PauloPirassunungaBrazil

Personalised recommendations