Advertisement

Ethanol Production from Sugarcane Bagasse Using Pressurized Microwave Treatment with Inorganic Salts and Salt-Tolerant Yeast

  • Chikako Asada
  • Chizuru Sasaki
  • Chihiro Oka
  • Yoshitoshi Nakamura
Original Paper
  • 10 Downloads

Abstract

A novel biomass pretreatment method, i.e. pressurized microwave hydrothermal treatment with inorganic salts, and the simultaneous saccharification and fermentation (SSF) using salt-tolerant cellulase, i.e. Meicelase, and salt-tolerant yeast, i.e. Saccharomyces cerevisiae BA11, were studied for the efficient ethanol production from sugarcane bagasse. The component analysis, enzymatic saccharification, and alcohol fermentation were carried out using pressurized microwave treated sugarcane bagasse with various inorganic salts. The pressurized microwave treatment using 2 wt% MgCl2 at a treatment temperature of 200 °C for a treatment time of 5 min followed by SSF without washing treatment of inorganic salts provided the maximum glucose and ethanol yields, i.e. 0.392 and 0.18 g/g-raw material, those corresponded to 99 and 90% of saccharification and ethanol conversion ratios, respectively.

Keywords

Sugarcane bagasse Pressurized microwave treatment Inorganic salt Enzymatic saccharification Alcohol production 

Notes

References

  1. 1.
    Albers, S.C., Berklund, A.M., Graff, G.D.: The rise and fall of innovation in biofuels. Nat. Biotechnol. 34, 814–821 (2016)CrossRefGoogle Scholar
  2. 2.
    Azadia, P., Malinaa, R., Barretta, S.R.H., Kraft, M.: The evolution of the biofuel science. Renew. Sustain. Energy Rev. 76, 1479–1484 (2017)CrossRefGoogle Scholar
  3. 3.
    IEA: Key world energy statistics 2015. International Energy Agency. France pp 6–8 (2016)Google Scholar
  4. 4.
    Hook, M., Sivertsson, A., Aleklett, K.: Validity of the fossil production outlooks in the IPCC emission scenarios. Nat. Resour. Res. 19, 63–81 (2010)CrossRefGoogle Scholar
  5. 5.
    Paul, S.K., Chakraborty, S.: Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels. Bioresour. Technol. 253, 85–93 (2018)CrossRefGoogle Scholar
  6. 6.
    Jiang, Y., Xin, F., Lu, J., Dong, W., Zhang, W., Zhang, M., Wu, H., Ma, J., Jiang, M.: State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour. Technol. 245, 1498–1506 (2017)CrossRefGoogle Scholar
  7. 7.
    Chiaramonti, D., Prussi, M., Ferrero, S., Oriani, L., Ottonello, P., Torre, P., Cherchi, F.: Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46, 25–35 (2012)CrossRefGoogle Scholar
  8. 8.
    Asada, C., Kondo, Y., Sasaki, C., Nakamura, Y.: Bioconversion of soy sauce residue treated with steam explosion into ethanol by Meicelase and Mucor indicus. J. Food Technol. 8, 187–190 (2010)CrossRefGoogle Scholar
  9. 9.
    Asada, C., Doi, K., Sasaki, C., Nakamura, Y.: Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat. Resour. 3, 175–179 (2012)Google Scholar
  10. 10.
    Rabemanolontsoa, H., Saka, S.: Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91 (2016)CrossRefGoogle Scholar
  11. 11.
    Ravindran, R., Jaiswal, A.K.: A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresour. Technol. 199, 92–102 (2016)CrossRefGoogle Scholar
  12. 12.
    Kamireddy, S.R., Li, J., Tucker, M., Degenstein, J., Ji, Y.: Effects and mechanism of methal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind. Eng. Chem. Res. 52, 1775–1782 (2013)CrossRefGoogle Scholar
  13. 13.
    Moodley, P., Kana, E.B.G.: Microwave-assisted inorganic salt pretreatment of sugarcane leaf waste: effect on physiochemical structure and enzymatic saccharification. Bioresour. Technol. 235, 35–42 (2017)CrossRefGoogle Scholar
  14. 14.
    Wei, H., Donohoe, B.S., Vinzant, T.B., Ciesielski, P.N., Wang, W., Gedvilas, L.M., Zeng, Y., Johnson, D.K., Ding, S.Y., Himmel, M.E., Tucker, M.P.: Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass. Biotechnol. Biofuels 4, 48–64 (2011)CrossRefGoogle Scholar
  15. 15.
    Tsubaki, S., Onda, A., Yanagisawa, K., Azuma, J.: Microwave-assisted hydrothermal hydrolysis of maltose with addition of microwave absorbing agents. Procedia Chem. 4, 288–293 (2012)CrossRefGoogle Scholar
  16. 16.
    Asada, C., Sasaki, C., Takamatsu, T., Nakamura, Y.: Conversion of steam-exploded cedar into ethanol using simultaneous saccharification, fermentation and detoxification process. Bioresour. Technol. 176, 203–209 (2015)CrossRefGoogle Scholar
  17. 17.
    Shinagawa, S.: Ethanol-fermenting yeast with excellent salt tolerance, heat resistance, ethanol resistance, and coagulation sedimentation, and use thereof, Patent, WO/2011/086985 (2011)Google Scholar
  18. 18.
    Asada, C., Sasaki, C., Hirano, T., Nakamura, Y.: Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. Bioresour. Technol. 182, 245–250 (2015)CrossRefGoogle Scholar
  19. 19.
    Rocha, G.J.M., Martin, C., Silva, V.F.N., Gomez, E.O., Goncalves, A.R.: Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111, 447–452 (2012)CrossRefGoogle Scholar
  20. 20.
    Bahrin, E.K., Baharuddin, A.S., Ibrahim, M.F., Razak, M.N.A., Sulaiman, A., Abd-Aziz, S., Hassan, M.A., Shirai, Y., Nishida, H.: Physicochemical property changes and enzymatic hydrolysis enhancement of oil palm empty fruit bunches treated with superheated steam. BioResources 7, 1784–1801 (2012)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Bioscience and BioindustryTokushima UniversityTokushimaJapan

Personalised recommendations