Advertisement

Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst Used in Trans/Esterification Reaction

  • Hamed Nayebzadeh
  • Mohammad Hojjat
Original Paper
  • 11 Downloads

Abstract

The effect of loading alkaline earth metal oxides on sulfated alumina-zirconia (S/AZ), as a nanocatalyst in esterification of oleic acid (OA) and transesterification of waste cooking oil (WCO) was experimentally investigated. S/AZ modified by calcium (S/Ca–AZ), magnesium (S/Mg–AZ), strontium (S/Sr–AZ) and barium oxides (S/Ba–AZ) were synthesized by solvent-free method and characterized by various methods. Based on the results, zirconia (Z) and S/AZ exhibited less activity in biodiesel production due to their low acidity and basicity while their activities were clearly increased by loading alkaline earth metal oxides. Among the samples, S/Ba–AZ shows the highest activity in both esterification and transesterification reactions, followed by S/Mg–AZ, S/Ca–AZ, and S/Sr–AZ, respectively. However, evaluating the activity of catalysts in second uses as an important factor for industrial application of a catalyst shows that, although the activity of all samples decreases, S/Ca–AZ has the least deterioration in activity. This can be related to its small particle size (below 15 nm), and well bonding of the calcium oxides with other metal oxides and sulfate groups which eliminates the leaching of active phases. Results confirm that S/Ca–AZ can be chosen as the most appropriate nanocatalyst with high activity and stability for biodiesel production from low-cost feedstock.

Keywords

Biodiesel Transesterification Esterification Zirconia Alumina Alkaline earth metal oxide 

Notes

References

  1. 1.
    Jamil, F., Al-Haj, L., Al-Muhtaseb Ala’a, H., Al-Hinai Mohab, A., Baawain, M., Rashid, U., Ahmad Mohammad, N.M.: Current scenario of catalysts for biodiesel production: a critical review. Rev. Chem. Eng. 34(2), 267 (2018)CrossRefGoogle Scholar
  2. 2.
    Avhad, M.R., Marchetti, J.M.: Innovation in solid heterogeneous catalysis for the generation of economically viable and ecofriendly biodiesel: a review. Catal. Rev. 58(2), 157–208 (2016).  https://doi.org/10.1080/01614940.2015.1103594 CrossRefGoogle Scholar
  3. 3.
    Vieira, S.S., Graça, I., Fernandes, A., Lopes, J.M.F.M., Ribeiro, M.F., Magriotis, Z.M.: Influence of calcination temperature on catalytic, acid and textural properties of SO4 2−/La2O3/HZSM-5 type catalysts for biodiesel production by esterification. Microporous Mesoporous Mater. 270, 189–199 (2018).  https://doi.org/10.1016/j.micromeso.2018.05.021 CrossRefGoogle Scholar
  4. 4.
    Li, H., Niu, S., Lu, C., Li, J.: Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production. Fuel 176, 63–71 (2016).  https://doi.org/10.1016/j.fuel.2016.02.067 CrossRefGoogle Scholar
  5. 5.
    Shokuhi Rad, A., Hoseini Nia, M., Ardestani, F., Nayebzadeh, H.: Esterification of waste chicken fat: sulfonated MWCNT toward biodiesel production. Waste Biomass Valorization (2016).  https://doi.org/10.1007/s12649-016-9732-9 CrossRefGoogle Scholar
  6. 6.
    Wan Omar, W.N.N., Saidina Amin, N.A.: Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass Bioenergy 35(3), 1329–1338 (2011)CrossRefGoogle Scholar
  7. 7.
    Gardy, J., Osatiashtiani, A., Céspedes, O., Hassanpour, A., Lai, X., Lee, A.F., Wilson, K., Rehan, M.: A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl. Catal. B 234, 268–278 (2018).  https://doi.org/10.1016/j.apcatb.2018.04.046 CrossRefGoogle Scholar
  8. 8.
    Alessio, Z., Francisco, I., Rafael, L.: Advances in nanocatalyst design for biofuel production. ChemCatChem 10(9), 1968–1981 (2018).  https://doi.org/10.1002/cctc.201701712 doiCrossRefGoogle Scholar
  9. 9.
    Shi, G., Yu, F., Wang, Y., Pan, D., Wang, H., Li, R.: A novel one-pot synthesis of tetragonal sulfated zirconia catalyst with high activity for biodiesel production from the transesterification of soybean oil. Renew. Energy 92, 22–29 (2016).  https://doi.org/10.1016/j.renene.2016.01.094 CrossRefGoogle Scholar
  10. 10.
    Zhang, Q., Wei, F., Ma, P., Zhang, Y., Wei, F., Chen, H.: Mesoporous Al–Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valorization 9(6), 911–918 (2018).  https://doi.org/10.1007/s12649-017-9865-5 CrossRefGoogle Scholar
  11. 11.
    Wijayanti, H., Duangchan, A.: Effect of nickel promoter on solvent-free sulphated zirconia catalyst for the esterification of acetic acid with n-butanol. Can. J. Chem. Eng. 94(1), 81–88 (2016).  https://doi.org/10.1002/cjce.22351 CrossRefGoogle Scholar
  12. 12.
    Hwang, C.-C., Mou, C.-Y.: Alumina-promoted sulfated mesoporous zirconia catalysts. J. Phys. Chem. C 113(13), 5212–5221 (2009).  https://doi.org/10.1021/jp810465n CrossRefGoogle Scholar
  13. 13.
    Yee, K.F., Lee, K.T., Abdullah, A.Z., Wu, J.C.S.: An alternative route for the preparation of sulfated zirconia loaded on alumina (SZA) for biodiesel production: an optimization study. Energy Sources A 35(14), 1296–1305 (2013).  https://doi.org/10.1080/15567036.2010.516326 CrossRefGoogle Scholar
  14. 14.
    Yee, K.F., Wu, J.C.S., Lee, K.T.: A green catalyst for biodiesel production from jatropha oil: optimization study. Biomass Bioenergy 35(5), 1739–1746 (2011)CrossRefGoogle Scholar
  15. 15.
    Rahmani Vahid, B., Saghatoleslami, N., Nayebzadeh, H., Maskooki, A.: Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity. Chem. Biochem. Eng. Q. 26(2), 71–77 (2012)Google Scholar
  16. 16.
    Duric, D.: Biodiesel quality, standards and properties. In: Montero, G., Stoytcheva, M. (eds.) Biodiesel-Quality, Emissions and By-Products, pp. 3–29. InTech, Rijeka (2011)Google Scholar
  17. 17.
    Nuamsrinuan, N., Limsuwan, P., Naemchanthara, K.: The study of calcium oxide from cockle shell used as a low-cost catalyzer for biodiesel production. Appl. Mech. Mater. 879, 108–112 (2018).  https://doi.org/10.4028/www.scientific.net/AMM.879.108 CrossRefGoogle Scholar
  18. 18.
    Nayebzadeh, H., Saghatoleslami, N., Maskooki, A., Rahmani Vahid, B.: Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid. Chem. Biochem. Eng. Q. 25(3), 259–265 (2014).  https://doi.org/10.15255/CABEQ.2013.1894 CrossRefGoogle Scholar
  19. 19.
    Hojjat, M., Nayebzadeh, H., Khadangi-Mahrood, M., Rahmani-Vahid, B.: Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology. Chem. Pap. 71(3), 689–698 (2016).  https://doi.org/10.1007/s11696-016-0096-1 CrossRefGoogle Scholar
  20. 20.
    D’Cruz, A., Kulkarni, M., Meher, L., Dalai, A.: Synthesis of biodiesel from canola oil using heterogeneous base catalyst. J. Am. Oil Chem. Soc. 84(10), 937–943 (2007).  https://doi.org/10.1007/s11746-007-1121-x CrossRefGoogle Scholar
  21. 21.
    Mootabadi, H., Salamatinia, B., Bhatia, S., Abdullah, A.Z.: Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 89(8), 1818–1825 (2010).  https://doi.org/10.1016/j.fuel.2009.12.023 CrossRefGoogle Scholar
  22. 22.
    Huang, C.-C., Yang, C.-J., Gao, P.-J., Wang, N.-C., Chen, C.-L., Chang, J.-S.: Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol. Green Chem. 17(6), 3609–3620 (2015).  https://doi.org/10.1039/C5GC00188A CrossRefGoogle Scholar
  23. 23.
    Sun, Y., Ma, S., Du, Y., Yuan, L., Wang, S., Yang, J., Deng, F., Xiao, F.-S.: Solvent-free preparation of nanosized sulfated zirconia with brønsted acidic sites from a simple calcination. J. Phys. Chem. B 109(7), 2567–2572 (2005).  https://doi.org/10.1021/jp046335a CrossRefGoogle Scholar
  24. 24.
    Ramu, S., Lingaiah, N., Prabhavathi Devi, B.L.A., Prasad, R.B.N., Suryanarayana, I., Sai Prasad, P.S.: Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts: effect of method of preparation of the catalyst on its structural stability and reactivity. Appl. Catal. A 276(1–2), 163–168 (2004)CrossRefGoogle Scholar
  25. 25.
    Nayebzadeh, H., Saghatoleslami, N., Rahmani Vahid, B., Maskooki, A.: Effect of calcination temperature on catalytic activity of synthesis SrO/S-ZrO2 by solvent-free method in esterification of oleic acid. Chem. Biochem. Eng. Q. 23(3), 267–273 (2013)Google Scholar
  26. 26.
    Kongwudthiti, S., Praserthdam, P., Inoue, M., Tanakulrungsank, W.: Synthesis of large-surface area silica-modified zirconia by the glycothermal method. J. Mater. Sci. Lett. 21(18), 1461–1464 (2002).  https://doi.org/10.1023/a:1019935320818 CrossRefGoogle Scholar
  27. 27.
    López, D.E., Suwannakarn, K., Bruce, D.A., Goodwin, J.G. Jr.: Esterification and transesterification on tungstated zirconia: effect of calcination temperature. J. Catal. 247(1), 43–50 (2007)CrossRefGoogle Scholar
  28. 28.
    Nayebzadeh, H., Saghatoleslami, N., Tabasizadeh, M.: Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. J. Taiwan Inst. Chem. Eng. 68, 379–386 (2016).  https://doi.org/10.1016/j.jtice.2016.09.041 CrossRefGoogle Scholar
  29. 29.
    Xie, W., Peng, H., Chen, L.: Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A 300(1), 67–74 (2006).  https://doi.org/10.1016/j.apcata.2005.10.048 CrossRefGoogle Scholar
  30. 30.
    Park, Y.-M., Lee, D.-W., Kim, D.-K., Lee, J.-S., Lee, K.-Y.: The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catal. Today 131(1–4), 238–243 (2008)CrossRefGoogle Scholar
  31. 31.
    Saravanan, K., Tyagi, B., Shukla, R.S., Bajaj, H.C.: Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl. Catal. B. 172–173, 108–115 (2015).  https://doi.org/10.1016/j.apcatb.2015.02.014 CrossRefGoogle Scholar
  32. 32.
    Cava, S., Tebcherani, S.M., Souza, I.A., Pianaro, S.A., Paskocimas, C.A., Longo, E., Varela, J.A.: Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Mater. Chem. Phys. 103(2–3), 394–399 (2007).  https://doi.org/10.1016/j.matchemphys.2007.02.046 CrossRefGoogle Scholar
  33. 33.
    Teo, S.H., Taufiq-Yap, Y.H., Ng, F.L.: Alumina supported/unsupported mixed oxides of Ca and Mg as heterogeneous catalysts for transesterification of Nannochloropsis sp. microalga’s oil. Energy Convers. Manag. 88, 1193–1199 (2014).  https://doi.org/10.1016/j.enconman.2014.04.049 CrossRefGoogle Scholar
  34. 34.
    Fernandes, F.A.N., Lopes, R.M., Mercado, M.P., Siqueira, E.S.: Production of soybean ethanol-based biodiesel using CaO heterogeneous catalysts promoted by Zn, K and Mg. Int. J. Green Energy 13(4), 417–423 (2016).  https://doi.org/10.1080/15435075.2014.977441 CrossRefGoogle Scholar
  35. 35.
    Ianos, R., Istratie, R., Pacurariu, C., Lazau, R.: Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach. Phys. Chem. Chem. Phys. 18(2), 1150–1157 (2016).  https://doi.org/10.1039/C5CP06240C CrossRefGoogle Scholar
  36. 36.
    Yoosuk, B., Krasae, P., Puttasawat, B., Udomsap, P., Viriya-empikul, N., Faungnawakij, K.: Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein. Chem. Eng. J. 162(1), 58–66 (2010)CrossRefGoogle Scholar
  37. 37.
    Bhavsar, R.S., Limsay, R.H., Talwatkar, C.B.: Heterogeneous catalysis on combustion synthesised SrZrO3. Indian J. Chem. Technol. 19(2), 124–127 (2012)Google Scholar
  38. 38.
    Valigi, M., Gazzoli, D., Pettiti, I., Mattei, G., Colonna, S., De Rossi, S., Ferraris, G.: WOx/ZrO2 catalysts: part 1. Preparation, bulk and surface characterization. Appl. Catal. A 231(1–2), 159–172 (2002)CrossRefGoogle Scholar
  39. 39.
    Niu, L., Gao, L., Xiao, G., Fu, B.: Study on biodiesel from cotton seed oil by using heterogeneous super acid catalyst SO4 2−/ZrO2. Asia-Pac. J. Chem. Eng. 7(S2), S222–S228 (2010).  https://doi.org/10.1002/apj.532 CrossRefGoogle Scholar
  40. 40.
    Meng, Y.-L., Wang, B.-Y., Li, S.-F., Tian, S.-J., Zhang, M.-H.: Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production. Bioresour. Technol. 128(2), 305–309 (2013).  https://doi.org/10.1016/j.biortech.2012.10.152 CrossRefGoogle Scholar
  41. 41.
    Hashemzehi, M., Saghatoleslami, N., Nayebzadeh, H.: A study on the structure and catalytic performance of ZnxCu1–xAl2O4 catalysts synthesized by the solution combustion method for the esterification reaction. C. R. Chim. 19(8), 955–962 (2016).  https://doi.org/10.1016/j.crci.2016.05.006 CrossRefGoogle Scholar
  42. 42.
    Kazemifard, S., Nayebzadeh, H., Saghatoleslami, N., Safakish, E.: Assessment the activity of magnetic KOH/Fe3O4@Al2O3 core–shell nanocatalyst in transesterification reaction: effect of Fe/Al ratio on structural and performance. Environ. Sci. Pollut. Res. 25(32), 32811–32821 (2018)CrossRefGoogle Scholar
  43. 43.
    Zhang, B., Peng, J., Zhang, L., Ju, S.: Optimization of preparation for MgO by calcination from basic magnesium carbonate using response surface methodology. In: Magnesium Technology 2012. pp. 75–79. Wiley, Hoboken (2012)Google Scholar
  44. 44.
    Altass, H.M., Khder, A.E.R.S.: Surface and catalytic properties of triflic acid supported zirconia: effect of zirconia tetragonal phase. J. Mol. Catal. A 411, 138–145 (2016).  https://doi.org/10.1016/j.molcata.2015.10.022 CrossRefGoogle Scholar
  45. 45.
    Hosseini-Sarvari, M., Sodagar, E.: Esterification of free fatty acids (biodiesel) using nano sulfated-titania as catalyst in solvent-free conditions. C. R. Chim. 16(3), 229–238 (2013).  https://doi.org/10.1016/j.crci.2012.10.016 CrossRefGoogle Scholar
  46. 46.
    Liu, L., Wen, Z., Cui, G.: Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification. Fuel 158, 176–182 (2015).  https://doi.org/10.1016/j.fuel.2015.05.025 CrossRefGoogle Scholar
  47. 47.
    Chang, Y.-P., Chang, P.-H., Lee, Y.-T., Lee, T.-J., Lai, Y.-H., Chen, S.-Y.: Morphological and structural evolution of mesoporous calcium aluminate nanocomposites by microwave-assisted synthesis. Microporous Mesoporous Mater. 183, 134–142 (2014).  https://doi.org/10.1016/j.micromeso.2013.09.013 CrossRefGoogle Scholar
  48. 48.
    Kouzu, M., Fujimori, A., Fukakusa, R., Satomi, N., Yahagi, S.: Continuous production of biodiesel by the CaO-catalyzed transesterification operated with continuously stirred tank reactor. Fuel Process. Technol. 181, 311–317 (2018).  https://doi.org/10.1016/j.fuproc.2018.10.008 CrossRefGoogle Scholar
  49. 49.
    Hashemzehi, M., Saghatoleslami, N., Nayebzadeh, H.: Microwave-assisted solution combustion synthesis of spinel-type mixed oxides for esterification reaction. Chem. Eng. Commun. 204(4), 415–423 (2016).  https://doi.org/10.1080/00986445.2016.1273831 CrossRefGoogle Scholar
  50. 50.
    Shao, G.N., Sheikh, R., Hilonga, A., Lee, J.E., Park, Y.-H., Kim, H.T.: Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 215–216, 600–607 (2013).  https://doi.org/10.1016/j.cej.2012.11.059 CrossRefGoogle Scholar
  51. 51.
    Chen, X.-R., Ju, Y.-H., Mou, C.-Y.: Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. J. Phys. Chem. C 111(50), 18731–18737 (2007).  https://doi.org/10.1021/jp0749221 CrossRefGoogle Scholar
  52. 52.
    Reddy, B.M., Reddy, G.K., Rao, K.N., Katta, L.: Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. J. Mol. Catal. A 306(1–2), 62–68 (2009)CrossRefGoogle Scholar
  53. 53.
    Rahmani Vahid, B., Haghighi, M.: Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: effect of fuel type on catalyst nanostructure and performance. Energy Convers. Manag. 134, 290–300 (2017).  https://doi.org/10.1016/j.enconman.2016.12.048 CrossRefGoogle Scholar
  54. 54.
    Parameswaram, G., Srinivas, M., Hari Babu, B., Sai Prasad, P.S., Lingaiah, N.: Transesterification of glycerol with dimethyl carbonate for the synthesis of glycerol carbonate over Mg/Zr/Sr mixed oxide base catalysts. Catal. Sci. Technol. 3(12), 3242–3249 (2013).  https://doi.org/10.1039/C3CY00532A CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations