Physical Properties of Composites Manufactured with Two Wastes from Food-Processing Industry

  • Abdelghani Remadnia
  • Adeline Goullieux
  • Michèle Quéneudec t’Kint
  • Rose-Marie DheillyEmail author


The sheer amount of waste being produced nowadays by the food processing industry makes it imperative to identify alternative procedures to recycle them. This paper describes an innovative use of protein waste with consumed plastic bottles within composite materials for building applications. The aim of this study was to investigate this two wastes association on the lightening of the composites. The effect of the protein waste introduction on the physical properties of the concrete manufactured with PET aggregates in the hardened state is studied: total and surface porosity, mechanical strengths, dynamic elasticity modulus and thermal conductivity. The optimal formulation of the basic composite, with PET aggregates, is: S/C = 2.8, W/C = 0.45 and a volume percentage of PET aggregates equal to 35%. The hemoglobin powder was introduced after water in the optimal PET composite. Various H/C mass ratios were used: 0.5, 1 and 2%. The influence of the mixing time after hemoglobin addition was also studied. Relative changes in composites properties due to protein introduction are experimentally investigated. For example a decrease in mechanical strengths and in thermal conductivity was observed. The results obtained allowed the elaborated composites to be functionally classified. So they show that the simultaneous valorization of two kinds of waste of the food process industry may be technically feasible and very interesting for the environment.


Animal protein PET aggregates Concrete composites Physical properties 



The authors are grateful to Platform of Microscopy of Picardie Jules Verne University, and especially, to Mr L. Dupont and Mr A. Jamali, for training and provision of high-technology equipment in the field of the electronic microscopy.


  1. 1.
    Siddique, R., Khatib, J., Kaur, I.: Use of recycled plastic in concrete: a review. Waste Manage 28, 1835–1852 (2008)CrossRefGoogle Scholar
  2. 2.
    Saikia, N., De Brito, J.: Use of plastic waste as aggregate in cement mortar and concrete preparation: a review. Constr. Build. Mater. 34, 385–401 (2012)CrossRefGoogle Scholar
  3. 3.
    Liu, S.J.: Recycled plastics as fillers in polymer cement concrete composites. Master of Science in Chemical Engineering. New Jersey Institute of Technology (1988)Google Scholar
  4. 4.
    Rebeiz, K.S., Craft, A.P.: Plastic waste management in construction: technological and institutional issues. Resour. Conserv. Recycl. 15, 245–257 (1995)CrossRefGoogle Scholar
  5. 5.
    Rebeiz, K.S.: Precast use of polymer concrete using unsaturated resin based on recycled PET waste. Constr. Build. Mater. 10, 215–220 (1996)CrossRefGoogle Scholar
  6. 6.
    Naik, T.R., Singh, S.S., Brodersen, B.S.: Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 26, 1489–1492 (1996)CrossRefGoogle Scholar
  7. 7.
    Simonsen, J.: Utilizing straw as fillers in thermoplastic building materials. Constr. Build. Mater. 10, 435–440 (1996)CrossRefGoogle Scholar
  8. 8.
    Breslin, V.T., Senturk, U., Berndt, C.C.: Long-term engineering properties of recycled plastic lumber in pier construction. Resour. Conserv. Recycl. 23, 243–258 (1998)CrossRefGoogle Scholar
  9. 9.
    Flaga, K.: Advanced in materials applied in civil engineering. J. Mater. Process. Technol. 106, 173–183 (2000)CrossRefGoogle Scholar
  10. 10.
    Sam, T.D., Tam, M.N.: Polymer concrete based on recycled polyethylene terephtalate (PET). NOCMAT/3. Vietnam International Conference on Non-Conventional Material and Technologies, pp. 226–228 (2002)Google Scholar
  11. 11.
    Hinislioglu, S., Agar, E.: Use of high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 28, 267–271 (2004)CrossRefGoogle Scholar
  12. 12.
    Avila, A.F., Duarte, M.V.: A mechanical analysis on recycled PET/HDPE composites. Polym. Degrad. Stab. 80, 373–382 (2003)CrossRefGoogle Scholar
  13. 13.
    Silva, D.A., Betioli, A.M., Gleize, P.J.P., Roman, H.R., Gomez, L.A., Ribeiro, J.L.D.: Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 35, 1741–1746 (2005)CrossRefGoogle Scholar
  14. 14.
    Ochi, T., Okubo, S., Fukui, K.: Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 29, 448–455 (2007)CrossRefGoogle Scholar
  15. 15.
    Kim, J.J., Park, C.G., Lee, S.W., Lee, Sa.W., Won, J.P.: Effects of the geometry of recycled PET fiber reinforcement on shrinkage cracking of cement-based composites. Composites B 39, 442–450 (2007)CrossRefGoogle Scholar
  16. 16.
    Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J., Song, Y.: Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 32, 232–240 (2010)CrossRefGoogle Scholar
  17. 17.
    Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., Incarnato, L.: Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos. Struct. 93, 2368–2374 (2011)CrossRefGoogle Scholar
  18. 18.
    Pereira de Oliveira, L.A., Castro-Gomes, J.P.: Physical and mechanical behaviour of recycled fibre reinforced mortar. Constr. Build. Mater. 25(4), 1712–1717 (2011)CrossRefGoogle Scholar
  19. 19.
    Foti, D.: Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr. Build. Mater. 25, 1906–1915 (2011)CrossRefGoogle Scholar
  20. 20.
    Choi, Y.W., Moon, D.J., Chumg, J.S., Cho, S.K.: Effects of waste PET bottles aggregate on the properties of concrete. Cem. Concr. Res. 35, 776–781 (2005)CrossRefGoogle Scholar
  21. 21.
    Albano, C., Camacho, N., Hernández, M., Matheus, A., Gutiérrez, A.: Influence of content and particle size of waste pet bottles on concrete behavior at different W/C ratios. Waste Manag. 29, 2707–2716 (2009)CrossRefGoogle Scholar
  22. 22.
    Yazoghli Marzouk, O., Dheilly, R.M., Quéneudec, M.: Valorisation of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 27, 310–318 (2007)CrossRefGoogle Scholar
  23. 23.
    Akcaozoglu, S., Atis, C.D., Akcaozoglu, K.: An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag. 32, 285–290 (2010)CrossRefGoogle Scholar
  24. 24.
    Chandra, S., Aavik, J.: Influence of proteins on some properties of portland cement mortar. Int. J. Cem. Compos. Lightweight Concr. 9, 91–94 (1987)CrossRefGoogle Scholar
  25. 25.
    Chandra, S.: How was it with admixtures. Struct. Technol. Archit. Pol. Cem. Ed. 4, 54–56 (2002)Google Scholar
  26. 26.
    Moropoulou, A., Bakolas, A., Anagnostopoulou, S.: Composite materials in ancient structures. Cem. Concr. Compos. 27, 295–300 (2005)CrossRefGoogle Scholar
  27. 27.
    Jasiczak, J., Zielinski, K.: Effect of protein additive on properties of mortar. Cem. Concr. Compos. 28, 451–457 (2006)CrossRefGoogle Scholar
  28. 28.
    Québriac, O, Bourgeois, C.: Actualités scientifiques & techniques en IAA, N° 35. Editions Lavoisier, Paris (1986)Google Scholar
  29. 29.
    Al-Rim, K., Ruzicka, M., Queneudec, M.: The effect of a biological air entraining agent on clay–cement mixture. In: Proceedings of the IIIrd International ConChem Conference, Brussels, pp. 361–369 (1995)Google Scholar
  30. 30.
    Chikhi, A., Madjoudj, N., Dheilly, R.M., Quéneudec, M.: Non conventional use of animal proteins: the case of cimetitious materials. In: Proceedings of the NOCMAT/3—Vietnam Third International Conference on Non-conventional Materials and Technologies, 12-13 march 2002, Hanoi, Vietnam, Construction Publishing House, pp. 93–99 (2002)Google Scholar
  31. 31.
    Chikhi, A., Dheilly, R.M., Quéneudec, M.: Reuse of food industry by-products: animal protein as a workability enhancing admixture, In: Dhir, R.K., Newlands, M.D., Halliday, J.E. (eds.) Recycling and Reuse of Waste Materials, pp 347–354. Thomas Telford Publishing, London (2003)Google Scholar
  32. 32.
    Remadnia, A., Dheilly, R.M., Laidoudi, B., Quéneudec, M.: Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Constr. Build. Mater. 23, 3118–3123 (2009)CrossRefGoogle Scholar
  33. 33.
    Chatterji, S.: Freezing of air-entrained cement-based materials and specific actions of air-entraining agents. Cem. Concr. Compos. 25, 759–765 (2003)CrossRefGoogle Scholar
  34. 34.
    Lianxiang, D., Folliard, K.J.: Mechanisms of air entrainment in concrete. Cem. Concr. Res. 35, 1463–1471 (2005)CrossRefGoogle Scholar
  35. 35.
    Chikhi, A., Dheilly, R.M., Quéneudec, M.: Study of the hydrous behaviour of a cement mortar formulated using a water-reducinng proteinic admixture. In: Dhir, R.K., Harrison, T.A., Newslands, M.D. (eds.) Cement Combinations in Durable Concrete, pp 808–816. Thomas Telford Publishing, London (2005)Google Scholar
  36. 36.
    Yazoghli Marzouk, O.S.: Contribution à la valorisation des emballages alimentaires de post-consommation en polyethylene téréphtalate et en polyethylene haute densité dans des matrices cimentaires. Etude de faisabilité et évaluation des performances physico-mécaniques, hydriques et thermiques. Thesis. University of Picardy Jules Verne, Amiens (2005)Google Scholar
  37. 37.
    Dupain, A., Lanchon, R., Saint Arroman, J.C.: Granulats, sols, ciments et bétons: caractérisation des matériaux de génie civil par les essais de laboratoire, Casteilla Edition (2001)Google Scholar
  38. 38.
    Remadnia, A.: Contribution à la valorisation de déchets protéiniques et d’emballages plastiques dans une matrice cimentaire. Elaboration et caractérisation de matériaux isolants à Haute Qualité Environnementale, Thesis. University of Picardy Jules Verne, Amiens (2009)Google Scholar
  39. 39.
    Redmania, A., Dheilly, R.M., Quéneudec, M.: Propriétés physico-mécaniques de mortiers à base de déchets de post-consommation (PET), Snigd-07, ENSET-Oran (2007)Google Scholar
  40. 40.
    Gustaffson, S.E., Bashir, S., Narendra, S.S.: The transient plane source technique: experimental design criteria. High Temp.—High Press. 23, 289–293 (1991)Google Scholar
  41. 41.
    Damadoran, S.: Interfaces, proteins films and foams. Adv. Food Nutr. Res. 34, 3–80 (1990)Google Scholar
  42. 42.
    Hoff, G.C.: Porosity strength considerations for cellular concrete. Cem. Concr. Res. 2, 91–100 (1972)CrossRefGoogle Scholar
  43. 43.
    Pospisil, F., Jambor, J., Belko, J.: Unit weight reduction of fly ash aerated concrete. In: Wittmann, F.H. (ed.) Advances in Autoclaved Aerated Concrete, pp. 43–45. A.A. Balkema, Rotterdam, (1992)Google Scholar
  44. 44.
    Poon, C.S., Shui, Z.H., Lam, L.: Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 18, 461–468 (2004)CrossRefGoogle Scholar
  45. 45.
    Odler, I., Robler, M.: Investigations on the relationship between porosity, structure and strength of hydrated portland cement pastes: effect of pore structure and degree of hydration. Cem. Concr. Res. 15, 401–411 (1985)CrossRefGoogle Scholar
  46. 46.
    Kass, J.L., Campbell-Allen, D.: Functional classification of lightweight concrete. Mater. Struct. 5, 173–175 (1972)Google Scholar
  47. 47.
    Benazzouk, A.: Contribution à la valorisation de déchets de caoutchouc: Composites cimentaires à base de caoutchouc compact et cellulaire, Thesis. University of Picardy Jules Verne, Amiens (2005)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Unit EPROAD (EA 4669), Engineering of Materials and Process Team (IMaP)University of Picardie Jules VerneAmiensFrance

Personalised recommendations