Advertisement

Succinate Production with Metabolically Engineered Escherichia coli Using Elephant Grass Stalk (Pennisetum purpureum) Hydrolysate as Carbon Source

  • Ayobami Matthew Olajuyin
  • Maohua Yang
  • Tingzhen Mu
  • Moustafa Mohamed Sharshar
  • Jianmin Xing
Original Paper
  • 17 Downloads

Abstract

Succinic acid is a spectacular chemical that can be used as the precursor of various industrial products including pharmaceuticals and biochemicals. The improvement of the succinic acid market depends on strains engineering that is capable of producing succinic acid at high yield and excellent growth rate which could utilize the wide range of carbon sources such as renewable biomass. Here we use counter selection using catAsacB for pathway design and strains developments. In this investigation, metabolically engineered Escherichia coli M6PM strain was constructed for the synthesis of succinic acid using elephant grass stalk (Pennisetum purpureum) as a carbon source. Elephant grass stalk hydrolysate was prepared which comprised of 11.60 ± 0.04 g/L glucose, 27.22 ± 0.04 g/L xylose and 0.65 ± 0.04 g/L arabinose. Metabolically engineered E. coli M6PM was constructed and fermentation with pure sugars revealed that it could utilize xylose and glucose efficiently. E. coli M6PM produced a final succinate concentration of 30.03 ± 0.02 g/L and a yield of 1.09 mol/mol during 72 h dual-phase fermentation using elephant grass stalk hydrolysate, which resulted in 64% maximum theoretical yield of succinic acid. The high succinate yield from elephant grass stalk demonstrated possible application of renewable biomass as feedstock for the synthesis of succinic acid using recombinant E. coli.

Keywords

Escherichia coli Succinic acid Elephant grass stalk Dual-phase fermentation 

Abbreviations

HPLC

High performance liquid chromatography

O.D

Optical density

rpm

Revolution per minutes

IPTG

l isopropyl-β-d-thiogalactopyranoside

ldhA

Lactate dehydrogenase A

pta-ackA

Phosphotranacetylase acetate kinase A

pflB

Pyruvate formate lyase B

poxB

Pyruvate oxidase B

pgi

Phosphoglucose isomerase

mreC

Murein cluster C

pyc

Pyruvate carboxylase

ppc

Phosphoenol pyruvate carboxylase

zwf

Glucose 6-phosphate dehydrogenase

pgl

6-Phosphogluconolactonase

gnd

6-Phosphogluconate dehydrogenase

tkt

Transketolase

tal

Transaldolase

Notes

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (863 Project, No 2014AA021905).

Supplementary material

12649_2018_524_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)

References

  1. 1.
    Song, H., Lee, S.Y.: Production of succinic acid by bacterial fermentation. Enzym. Microb. Technol. 39, 352–361 (2006)CrossRefGoogle Scholar
  2. 2.
    Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S.: Top Value Added Chemicals from Biomass. Volume 1-Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Department of Energy, Washington DC, (2004)Google Scholar
  3. 3.
    Willke, T., Vorlop, K.D.: Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66, 131–142 (2004)CrossRefGoogle Scholar
  4. 4.
    Menegol, D., Scholl, A.L., Fontana, R.C., Dillon, A.J.P., Camassola, M.: Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers. Manag. 88, 1252–1256 (2014)CrossRefGoogle Scholar
  5. 5.
    Xie, X.-M., Zhang, X.-Q., Dong, Z.-X., Guo, H.-R.: Dynamic changes of lignin contents of MT-1 elephant grass and its closely related cultivars. Biomass Bioenergy 35, 1732–1738 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhu, X.-G., Long, S.P., Ort, D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr. Opin. Biotechnol. 19, 153–159 (2008)CrossRefGoogle Scholar
  7. 7.
    Lee, P.C., Lee, S.Y., Chang, H.N.: Succinic acid production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J. Microbiol. Biotechnol. 18, 1792–1796 (2008)Google Scholar
  8. 8.
    Samuelov, N., Lamed, R., Lowe, S., Zeikus, J.: Influence of CO2–HCO3—levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57, 3013–3019 (1991)Google Scholar
  9. 9.
    Olajuyin, A.M., Yang, M., Liu, Y., Mu, T., Tian, J., Adaramoye, O.A., Xing, J.: Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 214, 653–659 (2016)CrossRefGoogle Scholar
  10. 10.
    Jantama, K., Zhang, X., Moore, J., Shanmugam, K., Svoronos, S., Ingram, L.: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881–893 (2008)CrossRefGoogle Scholar
  11. 11.
    Lin, H., Bennett, G.N., San, K.-Y.: Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7, 116–127 (2005)CrossRefGoogle Scholar
  12. 12.
    Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., Xing, J.: Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process. Biochem. 46, 365–371 (2011)CrossRefGoogle Scholar
  13. 13.
    Sánchez, A.M., Bennett, G.N., San, K.-Y.: Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229–239 (2005)CrossRefGoogle Scholar
  14. 14.
    Clark, D.P.: The fermentation pathways of Escherichia coli. FEMS Microbiol. Lett. 63, 223–234 (1989)CrossRefGoogle Scholar
  15. 15.
    Bai, B., Zhou, J.M., Yang, M.H., Liu, Y.L., Xu, X.H., Xing, J.M.: Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 185, 56–61 (2015)CrossRefGoogle Scholar
  16. 16.
    Lin, H., Bennett, G.N., San, K.-Y.: Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 32, 87–93 (2005)CrossRefGoogle Scholar
  17. 17.
    Noltmann, E.A.: Aldose-ketose isomerases. In: The Enzymes, pp. 271–354. Elsevier, Amsterdam (1972)Google Scholar
  18. 18.
    Hansen, T., Oehlmann, M., Schönheit, P.: Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183, 3428–3435 (2001)CrossRefGoogle Scholar
  19. 19.
    Schönheit, P., Schäfer, T.: Metabolism of hyperthermophiles. World J. Microb. Biotechnol. 11, 26–57 (1995)CrossRefGoogle Scholar
  20. 20.
    Selig, M., Xavier, K.B., Santos, H., Schönhei, P.: Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 167, 217–232 (1997)CrossRefGoogle Scholar
  21. 21.
    Hansen, T., Schönheit, P.: Escherichia coli phosphoglucose isomerase can be substituted by members of the PGI family, the PGI/PMI family, and the cPGI family. FEMS Microbiol. Lett. 250, 49–53 (2005)CrossRefGoogle Scholar
  22. 22.
    Müller-Hartmann, H., Müller-Hill, B.: The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium. J. Mol. Biol. 257, 473–478 (1996)CrossRefGoogle Scholar
  23. 23.
    Okada, T., Ueyama, K., Niiya, S., Kanazawa, H., Futai, M., Tsuchiya, T.: Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J. Bacteriol. 146, 1030–1037 (1981)Google Scholar
  24. 24.
    Narang, A., Pilyugin, S.S.: Bacterial gene regulation in diauxic and non-diauxic growth. J. Theor. Biol. 244, 326–348 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hermsen, R., Okano, H., You, C., Werner, N., Hwa, T.: A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 11, 801 (2015)CrossRefGoogle Scholar
  26. 26.
    Vemuri, G.N., Eiteman, M.A., Altman, E.: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68, 1715–1727 (2002)CrossRefGoogle Scholar
  27. 27.
    Cheng, K.K., Zhao, X.B., Zeng, J., Zhang, J.A.: Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod. Biorefin. 6, 302–318 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X.: Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 24, 87–96 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhao, Y., Cao, W., Wang, Z., Zhang, B., Chen, K., Ouyang, P.: Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells. Bioresour. Technol. 202, 152–157 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ayobami Matthew Olajuyin
    • 1
    • 2
  • Maohua Yang
    • 1
    • 2
  • Tingzhen Mu
    • 1
    • 2
  • Moustafa Mohamed Sharshar
    • 1
    • 2
  • Jianmin Xing
    • 1
    • 2
  1. 1.Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations