Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3071–3087 | Cite as

Enhancement of Methane Production from Banana Harvesting Residues: Optimization of Thermal–Alkaline Hydrogen Peroxide Pretreatment Process by Experimental Design

  • Fatih Yilmaz
  • Elçin Kökdemir Ünşar
  • Nuriye Altınay PerendeciEmail author
Original Paper
  • 122 Downloads

Abstract

Increase of population has a significant effect on energy demand which results in depletion of fossil fuels, and this causes a search for alternative renewable energy sources. One of these alternatives is production of bioenergy and biofuel from renewable and non-food feedstocks such as lignocellulosic biomass and biowaste. However, lignocellulosic biomass needs pretreatment because of its complex structure. Effectiveness of thermal–alkaline H2O2 pretreatment process and determination of its optimum conditions using central composite design of RSM were evaluated for the enhancement of methane production from banana harvesting residues. Optimum process conditions for cost driven approach was determined as 50 °C reaction temperature, 2.73% H2O2 concentration and 6 h reaction time. As a result of pretreatment at optimum conditions, 40% increase on biochemical methane potential was obtained with 290 mLCH4/gVS methane production. SEM and FTIR results revealed surface disruption and lignin removal impacts of pretreatment, respectively. Thermal–alkaline H2O2 pretreatment was determined as an effective pretreatment process for banana harvesting residues.

Graphical Abstract

Keywords

Banana harvesting residue Biochemical methane potential Process optimization Thermal–alkaline H2O2 pretreatment 

Notes

Acknowledgements

This study has been financially supported (FDK 2017-2700) by Scientific Research Projects Unit of Akdeniz University.

References

  1. 1.
    Khanal, S.K., Surampalli, R.Y., Zhang, T.C., Lamsal, B.P., Tyagi, R.D., Kao, C.M.: Bioenergy and Biofuel from Biowastes and Biomass. American Society of Civil Engineers (ASCE), Reston (2010)Google Scholar
  2. 2.
    Zhang, C., Li, J., Liu, C., Liu, X., Wang, J., Li, S., Fan, G., Zhang, L.: Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour. Technol. 149, 353–358 (2013).  https://doi.org/10.1016/j.biortech.2013.09.070 CrossRefGoogle Scholar
  3. 3.
    Padam, B.S., Tin, H.S., Chye, F.Y., Abdullah, M.I.: Banana by-products: an under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 51, 3527–3545 (2014).  https://doi.org/10.1007/s13197-012-0861-2 CrossRefGoogle Scholar
  4. 4.
    Rosentrater, K.A., Todey, D., Persyn, R.: Quantifying total and sustainable agricultural biomass resources in South Dakota—a preliminary assessment. Agric. Eng. Int. CIGR J. Sci. Res. Dev. 11, 1–14 (2009)Google Scholar
  5. 5.
    Food and Agriculture Organization of The United Nations. http://www.fao.org/economic/worldbananaforum/statistics/en/. Accessed 20 Sept 2017
  6. 6.
    Mena-Espino, X., Barahona-Perez, F., Alzate-Gaviria, L., Rodriguez-Vazquez, R., Tzec-Sima, M., Dominguez-Maldonado, J., Canto-Canche, B.B.: Saccharification with Phanerochaete chrysosporium and Pleurotus ostreatus enzymatic extracts of pretreated banana waste. Afr. J. Biotechnol. 10, 3824–3834 (2011).  https://doi.org/10.5897/AJB10.1470 Google Scholar
  7. 7.
    da Costa Correia, J.A., Júnior, J.E.M., Gonçalves, L.R.B., Rocha, M.V.P.: Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters. Bioresour. Technol. 139, 249–256 (2013).  https://doi.org/10.1016/j.biortech.2013.03.153 CrossRefGoogle Scholar
  8. 8.
    Zheng, Y., Zhao, J., Xu, F., Li, Y.: Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 42, 35–53 (2014).  https://doi.org/10.1016/j.pecs.2014.01.001 CrossRefGoogle Scholar
  9. 9.
    Zhang, L., You, T., Zhang, L., Yang, H., Xu, F.: Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Bioresour. Technol. 164, 292–298 (2014).  https://doi.org/10.1016/j.biortech.2014.04.075 CrossRefGoogle Scholar
  10. 10.
    Sun, R.C., Sun, X.F.: Fractional and structural characterization of hemicelluloses isolated by alkali and alkaline peroxide from barley straw. Carbohydr. Polym. 49, 415–423 (2002).  https://doi.org/10.1016/S0144-8617(01)00349-6 CrossRefGoogle Scholar
  11. 11.
    Sun, C., Liu, R., Cao, W., Yin, R., Mei, Y., Zhang, L.: Impacts of alkaline hydrogen peroxide pretreatment on chemical composition and biochemical methane potential of agricultural crop stalks. Energy Fuels 29, 4966–4975 (2015).  https://doi.org/10.1021/acs.energyfuels.5b00838 CrossRefGoogle Scholar
  12. 12.
    Rabelo, S.C., Andrade, R.R., Maciel Filho, R., Costa, A.C.: Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol. Fuel. 136, 349–357 (2014).  https://doi.org/10.1016/j.fuel.2014.07.033 CrossRefGoogle Scholar
  13. 13.
    Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101, 7523–7528 (2010).  https://doi.org/10.1016/j.biortech.2010.04.060 CrossRefGoogle Scholar
  14. 14.
    Banerjee, G., Car, S., Scott-Craig, J.S., Hodge, D.B., Walton, J.D.: Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose. Biotechnol. Biofuels 4, 16 (2011).  https://doi.org/10.1186/1754-6834-4-16 CrossRefGoogle Scholar
  15. 15.
    Zhao, P.X., Cui, F.J., Bu, L.X., Jiang, J.X.: Biogas production from microbial-alkali pretreated corn stover by solid-state anaerobic digestion. Int. J. Agric. Biol. Eng. 8, 96–104 (2015).  https://doi.org/10.3965/j.ijabe.20150805.2032 Google Scholar
  16. 16.
    Alvarez-Vasco, C., Zhang, X.: Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways. Bioresour. Technol. 150, 321–327 (2013).  https://doi.org/10.1016/j.biortech.2013.10.020 CrossRefGoogle Scholar
  17. 17.
    Aisah, M., Siti Norasmah, S., Ibrahim, W.A.: Renewable sugars hydrolyzed from banana pseudo-stem using different chemical pretreatments. Adv. Mech. Mater. 372, 97–100 (2013).  https://doi.org/10.4028/www.scientific.net/AMM.372.97 Google Scholar
  18. 18.
    Kumar, S., Gujjala, L.K.S., Banerjee, R.: Simultaneous pretreatment and saccharification of bamboo for biobutanol production. Ind. Crops Prod. 101, 21–28 (2017).  https://doi.org/10.1016/j.indcrop.2017.02.028 CrossRefGoogle Scholar
  19. 19.
    Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E.: Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (Peanut) hull. Energy Convers. Manag. 139, 260–275 (2017).  https://doi.org/10.1016/j.enconman.2017.02.063 CrossRefGoogle Scholar
  20. 20.
    Oladi, S., Aita, G.M.: Optimization of liquid ammonia pretreatment variables for maximum enzymatic hydrolysis yield of energy cane bagasse. Ind. Crops Prod. 103, 122–132 (2017).  https://doi.org/10.1016/j.indcrop.2017.02.023 CrossRefGoogle Scholar
  21. 21.
    Qin, L., Li, X., Zhu, J.Q., Li, W.C., Xu, H., Guan, Q.M., Zhang, M.T., Li, B.Z., Yuan, Y.J.: Optimization of ethylenediamine pretreatment and enzymatic hydrolysis to produce fermentable sugars from corn stover. Ind. Crops Prod. 102, 51–57 (2017).  https://doi.org/10.1016/j.indcrop.2017.03.026 CrossRefGoogle Scholar
  22. 22.
    Terán Hilares, R., de Almeida, G.F., Ahmed, M.A., Antunes, F.A.F., da Silva, S.S., Han, J.I., Santos, J.C.: dos: Hydrodynamic cavitation as an efficient pretreatment method for lignocellulosic biomass: a parametric study. Bioresour. Technol. 235, 301–308 (2017).  https://doi.org/10.1016/j.biortech.2017.03.125 CrossRefGoogle Scholar
  23. 23.
    Deshavath, N.N., Mohan, M., Veeranki, V.D., Goud, V.V., Pinnamaneni, S.R., Benarjee, T.: Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. 3 Biotech 7, 1–12 (2017).  https://doi.org/10.1007/s13205-017-0752-3 CrossRefGoogle Scholar
  24. 24.
    Charte, F., Romero, I., Pérez-Godoy, M.D., Rivera, A.J., Castro, E.: Comparative analysis of data mining and response surface methodology predictive models for enzymatic hydrolysis of pretreated olive tree biomass. Comput. Chem. Eng. 101, 23–30 (2017).  https://doi.org/10.1016/j.compchemeng.2017.02.008 CrossRefGoogle Scholar
  25. 25.
    APHA/AWWA/WEF: Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC (2005)Google Scholar
  26. 26.
    Van Soest, P.J.: Use of detergent in the analysis of fibrous feeds. A rapid method for the determination of fibre and lignin. J. Assoc. Anal. Chem. 46, 829–835 (1963)Google Scholar
  27. 27.
    Dreywood, R.: Qualitative test for carbohydrate material. Ind. Eng. Chem. Res. 18, 199 (1946)Google Scholar
  28. 28.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  29. 29.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.: The folin by oliver. J. Biol. Chem. 193, 265 (1951).  https://doi.org/10.1016/0304-3894(92)87011-4 Google Scholar
  30. 30.
    Bridoux, G., Dhulster, P., Manem, J.: Grease analysis on municipal waste water treatment plants. Tech. Sci. Methods. 5, 257–262 (1994)Google Scholar
  31. 31.
    Tchobanoglous, G., Theisen, H., Vigil, S.A.: Integrated Solid Waste Management: Engineering Principles and Management Issues. McGraw-Hill, Singapore (1993)Google Scholar
  32. 32.
    Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J.M., Junqua, G., Steyer, J.P.: Alternative methods for determining anaerobic biodegradability: a review. Process Biochem. 45, 431–440 (2010).  https://doi.org/10.1016/j.procbio.2009.11.018 CrossRefGoogle Scholar
  33. 33.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2001)Google Scholar
  34. 34.
    Carrère, H., Sialve, B., Bernet, N.: Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour. Technol. 100, 3690–3694 (2009).  https://doi.org/10.1016/j.biortech.2009.01.015 CrossRefGoogle Scholar
  35. 35.
    Us, E., Perendeci, N.A.: Improvement of methane production from greenhouse residues: optimization of thermal and H2SO4 pretreatment process by experimental design. Chem. Eng. J. 181–182, 120–131 (2012).  https://doi.org/10.1016/j.cej.2011.11.038 CrossRefGoogle Scholar
  36. 36.
    Li, C., Liu, G., Nges, I.A., Deng, L., Nistor, M., Liu, J.: Fresh banana pseudo-stems as a tropical lignocellulosic feedstock for methane production. Energy. Sustain. Soc. (2016).  https://doi.org/10.1186/s13705-016-0093-9 Google Scholar
  37. 37.
    Gabhane, J., Prince William, S.P.M., Gadhe, A., Rath, R., Vaidya, A.N., Wate, S.: Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication. Waste Manag. 34, 498–503 (2014).  https://doi.org/10.1016/j.wasman.2013.10.013 CrossRefGoogle Scholar
  38. 38.
    Zhang, C., Bi, S., Zhao, M., Chang, S., Li, Y., Pei, P., Gao, X., Zhang, L., Li, J., Li, S.: Biogas production performance of different components from banana stems. Energy Fuels 30, 6425–6429 (2016).  https://doi.org/10.1021/acs.energyfuels.6b00657 CrossRefGoogle Scholar
  39. 39.
    Chittibabu, S., Saseetharan, M.K., Kalaivani, M.R., Rajesh, M.P.: Optimization of microwave-assisted alkali pretreatment and enzymatic hydrolysis of banana pseudostem. Energy Sources A 36, 2691–2698 (2014).  https://doi.org/10.1080/15567036.2011.574193 CrossRefGoogle Scholar
  40. 40.
    Pei, P., Zhang, C., Li, J., Chang, S., Li, S., Wang, J., Zhao, M., Jiang, L., Yu, M., Chen, X.: Optimization of NaOH pretreatment for enhancement of biogas production of banana pseudo-stem fiber using response surface methodology. BioResources 9, 5073–5087 (2014)CrossRefGoogle Scholar
  41. 41.
    Sun, R.C., Fang, J.M., Tomkinson, J.: Delignification of rye straw using hydrogen peroxide. Ind. Crops Prod. 12, 71–83 (2000)CrossRefGoogle Scholar
  42. 42.
    Xiang, Q., Lee, Y.Y.: Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide. Appl. Biochem. Biotechnol. 84–86, 153–162 (2000)CrossRefGoogle Scholar
  43. 43.
    Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D., Osborne, J.: A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98, 3000–3011 (2007)CrossRefGoogle Scholar
  44. 44.
    Gupta, R., Lee, Y.Y.: Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresour. Technol. 101, 8185–8191 (2010)CrossRefGoogle Scholar
  45. 45.
    Michalska, K., Ledalpwicz, S.: Alkaline hydrogen peroxide pretreatment of energy crops for biogas production. Chem. Pap. 68(7), 913–922 (2014)Google Scholar
  46. 46.
    Palamae, S., Palachum, W., Chisti, Y., Choorit, W.: Retention of hemicellulose during delignification of oil palm empty fruit bunch (EFB) fiber with peracetic acid and alkaline peroxide. Biomass Bioenergy 66, 240–248 (2014)CrossRefGoogle Scholar
  47. 47.
    Bolado-Rodríguez, S., Toquero, C., Martín-Juárez, J., Travaini, R., García- Encina, P.A.: Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 201, 182–190 (2016)CrossRefGoogle Scholar
  48. 48.
    Dustral, E.D., Santos, F.A., Alves Alencar, B.R., Reis, A.L.S., Rodrigues de Souza, R.F., Aquino, K.A.S., Morais, M.A., Menezes, R.S.C.: Alkaline hydrogen peroxide pretreatment of lignocellulosic biomass: status and perspectives. Biomass Convers. Biorefin. 8(1), 225–234 (2018)CrossRefGoogle Scholar
  49. 49.
    Zhu, M.Q., Wen, J.L., Wang, Z.W., Su, Y.Q., Wei, Q., Sun, R.C.: Structural changes in lignin during integrated process of steam explosion followed by alkaline hydrogen peroxide of Eucommia ulmoides oliver and its effect on enzymatic hydrolysis. Appl. Energy 158, 233–242 (2015)CrossRefGoogle Scholar
  50. 50.
    Li, J., Lu, M., Guo, X., Zhang, H., Li, Y., Han, L.: Insights into the improvement of alkaline hydrogen peroxide (AHP) pretreatment on the enzymatic hydrolysis of corn stover: chemical and microstructural analyses. Bioresour. Technol. 265, 1–7 (2018)CrossRefGoogle Scholar
  51. 51.
    Song, Z.L., Yang, G.H., Guo, Y., Zhang, T.: Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. Bioresources 7, 3223–3236 (2012)Google Scholar
  52. 52.
    Botheju, D., Bakke, R.: Oxygen effects in anaerobic digestion—a review. Open Waste Manag. J. 4, 1–19 (2011)CrossRefGoogle Scholar
  53. 53.
    Juárez, J.M., Hernando, A.L., Torre, R.M., Lanza, S.B., Rodríguez, S.B.: Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresour. Technol. 218, 265–271 (2016)CrossRefGoogle Scholar
  54. 54.
    Karagöz, P., Rocha, I.V., Özkan, M., Angelidaki, I.: Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation. Bioresour. Technol. 104, 349–357 (2012)CrossRefGoogle Scholar
  55. 55.
    Bari, M.N., Alam, M.Z., Muyibi, S.A., Jamal, P., Abdullah-Al-Mamun: Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour. Technol. 100, 3113–3120 (2009).  https://doi.org/10.1016/j.biortech.2009.01.005 CrossRefGoogle Scholar
  56. 56.
    Su, Y., Du, R., Guo, H., Cao, M., Wu, Q., Su, R., Qi, W., He, Z.: Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod. Process. 94, 322–330 (2015).  https://doi.org/10.1016/j.fbp.2014.04.001 CrossRefGoogle Scholar
  57. 57.
    Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013).  https://doi.org/10.1016/j.apenergy.2012.12.019 CrossRefGoogle Scholar
  58. 58.
    Xu, J., Sun, Y., Sun, R.: Structural and hydrolysis characteristics of cypress pretreated by ionic liquids in a microwave irradiation environment. Bioenergy Res. 7, 1305–1316 (2014).  https://doi.org/10.1007/s12155-014-9464-2 CrossRefGoogle Scholar
  59. 59.
    Liu, H., Pang, B., Wang, H., Li, H., Lu, J., Niu, M.: Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover. J. Agric. Food Chem. 63, 3229–3234 (2015).  https://doi.org/10.1021/jf505433q CrossRefGoogle Scholar
  60. 60.
    Chen, H., Zhao, J., Hu, T., Zhao, X., Liu, D.: A comparison of several organosolv pretreatments for improving the enzymatic hydrolysis of wheat straw: substrate digestibility, fermentability and structural features. Appl. Energy 150, 224–232 (2015).  https://doi.org/10.1016/j.apenergy.2015.04.030 CrossRefGoogle Scholar
  61. 61.
    Amnuaycheewa, P., Hengaroonprasan, R., Rattanaporn, K.: Enhancing enzymatic hydrolysis and biogas production from rice straw by pretreatment with organic acids. Ind. Crop. Prod. 87, 247–254 (2016).  https://doi.org/10.1016/j.indcrop.2016.04.069 CrossRefGoogle Scholar
  62. 62.
    Albarelli, J.Q., Rabelo, R.B., Santos, D.T., Beppu, M.M., Meireles, M.A.A.: Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal. J. Supercrit. Fluids 58, 343–351 (2011).  https://doi.org/10.1016/j.supflu.2011.07.014 CrossRefGoogle Scholar
  63. 63.
    Xu, F., Sun, J., Sun, R., Fowler, P., Baird, M.S.: Comparative study of organosolv lignins from wheat straw. Ind. Crops Prod. 23, 180–193 (2006).  https://doi.org/10.1016/j.indcrop.2005.05.008 CrossRefGoogle Scholar
  64. 64.
    Sukhbaatar, B., Hassan, E.B., Kim, M., Steele, P., Ingram, L.: Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses. Carbohydr. Polym. 101, 196–202 (2014).  https://doi.org/10.1016/j.carbpol.2013.09.027 CrossRefGoogle Scholar
  65. 65.
    Meng, L., Kang, S., Zhang, X., Wu, Y., Sun, R.: Comparative characterization of lignins extracted from cotton stalk based on complete dissolution in different systems. Ind. Eng. Chem. Res. 51, 9858–9866 (2012)CrossRefGoogle Scholar
  66. 66.
    Ciolacu, D., Ciolacu, F., Popa, V.I.: Amorphous cellulose—structure and characterization. Cellul. Chem. Technol. 45, 13–21 (2011)Google Scholar
  67. 67.
    Ma, X.J., Yang, X.F., Zheng, X., Lin, L., Chen, L.H., Huang, L.L., Cao, S.L.: Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresour. Technol. 161, 215–220 (2014).  https://doi.org/10.1016/j.biortech.2014.03.044 CrossRefGoogle Scholar
  68. 68.
    He, Y., Ding, Y., Xue, Y., Yang, B., Liu, F., Wang, C., Zhu, Z., Qing, Q., Wu, H., Zhu, C., Tao, Z., Zhang, D.: Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresour. Technol. 193, 324–330 (2015).  https://doi.org/10.1016/j.biortech.2015.06.088 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Fatih Yilmaz
    • 1
  • Elçin Kökdemir Ünşar
    • 1
  • Nuriye Altınay Perendeci
    • 1
    Email author
  1. 1.Department of Environmental EngineeringAkdeniz UniversityAntalyaTurkey

Personalised recommendations