Advertisement

Olive Mill Wastewater Agronomic Valorization by its Spreading in Olive Grove

  • Salwa Magdich
  • Béchir Ben Rouina
  • Emna Ammar
Original Paper

Abstract

Purpose

Olive mill wastewater (OMW) is one of the main waste streams of olive processing and its disposal can represent a relevant environmental issue in Mediterranean countries. OMW is characterised by high pollutant load, salinity and phytotoxic levels of polyphenols, but also by a high amount of organic compounds and plant mineral nutrients. This study aimed to investigate the OMW reuse as a whole effluent for its soil conditioner and fertilizer potentialities in agriculture, in the frame work of circular economy.

Methods

For this purpose, OMW was applied at three doses (50, 100 and 200 m3 ha−1 year−1) over three successive years in olive field. Soil physico-chemical characteristics, enzymes activities and microbial properties, olive yield and olive oil quality were analysed.

Results

The findings revealed that the electrical conductivity, organic matter, total nitrogen, sodium, and potassium soil contents increased proportionally with OMW concentration and application frequency in the soil OMW-treated layers. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with the OMW spreading rates. Furthermore, all the soil enzyme activities tested (dehydrogenase, β-glucosidase and urease) were enhanced in the OMW-amended soils compared to the control. Vegetative activity and olive yield showed improvement according to the OMW level spread. With the only exception of the phenol content, which was significantly higher in the oils extracted from OMW treated olive trees than the control, the oil quality parameters did not show any significant difference.

Conclusions

OMW agronomic application constitutes a suitable practice to better manage this effluent, with positive effects on olive production and oil quality. Consequently, OMW could be considered as a useful and low cost fertilizer in olive orchard requiring the use of suitable doses especially in the Mediterranean area where this practice has been extended.

Keywords

Soil chemical and microbial properties Enzymes activities Olea europaea L. Olive oil quality 

Abbreviations

OMW

Olive mill wastewater

FW

Fresh weight

VOO

Virgin olive oil

IOOC

International Olive Oil Council

Notes

Acknowledgements

This work was carried out in the Olive Tree Institute of Tunisia. The facilities and services of the Institute are gratefully acknowledged. Funding was provided by Sfax University.

References

  1. 1.
    Ben Rouina, B., Boukhris, M., Trigui, A.: Effect of the climate and the soil conditions on crops performance of the Chemlali de Sfax olive trees. Acta Hortic. 586, 285–289 (2002)CrossRefGoogle Scholar
  2. 2.
    Tsadilas, C.D., Chartzoulakis, K.S.: Boron efficiency in olive trees in Greece in relation to soil Boron concentration. Proceedings of the Third International Symposium on Olive Growing. ISHS, volume: 341344 (1999)Google Scholar
  3. 3.
    Jarboui, R., Sellami, F., Kharroubi, A., Azri, C., Gharsallah, N., Ammar, E.: Olive mill wastewater evaporation management using PCA method case study of natural degradation in stabilization ponds (Sfax, Tunisia). J. Hazard. Mater. 176, 992–1005 (2010)CrossRefGoogle Scholar
  4. 4.
    Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: Biochemical characterizations and valorization strategies, a review. Process Biochem. 48, 1532–1552 (2013)CrossRefGoogle Scholar
  5. 5.
    Saadi, I., Laor, Y., Raviv, M., Medina, S.: Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 66, 75–83 (2007)CrossRefGoogle Scholar
  6. 6.
    Peri, C., Proietti, P.: Olive mill waste and by-products. In: Peri C. (ed.) The Extra-Virgin Olive Oil Handbook, 22, 283–302. Wiley, Chichester (2014)CrossRefGoogle Scholar
  7. 7.
    Hachicha, S., Cegarra, J., Sellami, F., Hachicha, R., Drira, N., Medhioub, K., Ammar, E.: Elimination of polyphenols toxicity from olive mill wastewater sludge by its co-composting with sesame bark. J. Hazard. Mater. 161, 1131–1139 (2009)CrossRefGoogle Scholar
  8. 8.
    Barbera, A.C., Maucieri, C., Cavallaro, V., Ioppolo, A., Spagna, G.: Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 119, 43–53 (2013)CrossRefGoogle Scholar
  9. 9.
    Piotrowska, A., Antonietta, M., Scotti, R., Gianfreda, L.: Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 161, 8–17 (2011)CrossRefGoogle Scholar
  10. 10.
    Mechri, B., Issaoui, M., Echbili, A., Chehab, H., Mariem, F.B., Braham, M., Hammami, M.: Olive orchard amended with olive mill wastewater: effects on olive fruit and olive oil quality. J. Hazard. Mater. 172, 1544–1550 (2009)CrossRefGoogle Scholar
  11. 11.
    Lozano-García, B., Parras-Alcántara, L., del Toro Carrillo de Albornoz, M.: Effects of oil mill wastes on surface soil properties, runoff and soil losses in traditional olive groves in southern Spain. Catena 85, 187–193 (2011)CrossRefGoogle Scholar
  12. 12.
    Regni, L., Nasini, L., Ilarioni, L., Brunori, A., Massaccesi, L., Agnelli, A., Proietti, P.: Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Front. Plant Sci. 7: 2042.  https://doi.org/10.3389/fpls.2016.02042 (2017)
  13. 13.
    Regni, L., Gigliotti, G., Nasini, L., Proietti, P.: Reuse of olive mill waste as soil amendment. In: Galanakis C.M. (ed.) Olive Mill Waste: Recent Advances for Sustainable Management, 97–118. Publisher, Elsevier-Academic Press (2017)CrossRefGoogle Scholar
  14. 14.
    Sierra, J., Marti, E., Garau, M.A., Cruaňas, R.: Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci. Total Environ. 378, 90–94 (2007)CrossRefGoogle Scholar
  15. 15.
    El Hassani, F.Z., Zinedine, A., Mdaghri Alaoui, S., Merzouki, M., Benlemlih, M.: Use of olive mill wastewater as an organic amendment for Mentha spicata L. Ind. Crops Prod. 32, 343–348 (2010)CrossRefGoogle Scholar
  16. 16.
    Montemurro, F., Diacono, M., Vitti, C., Ferri, D.: Potential use of olive mille wastewater as amendment: crops yield and soil properties assessment. Commun. Soil Sci. Plant Anal. 42, 2594–2603 (2011)CrossRefGoogle Scholar
  17. 17.
    Organisation Internationale de Normalisation, ISO 8358. Matières fertilisantes solides-Préparation des échantillons pour analyse chimique et physique. (1991)Google Scholar
  18. 18.
    Nelson, D.W., Sommers, L.E.: Methods of Soil Analysis. Part 3, pp. 961–1010. Chemical methods, Madison (1996)Google Scholar
  19. 19.
    Box, J.D.: Investigation of the Folin–Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Wat. Res. 17, 511–522 (1983)CrossRefGoogle Scholar
  20. 20.
    Olsen, S.R., Sommers, L.E.: Phosphorus. In: Page, A.L., Milller, R.H., Keeny, D.R. (eds.) Methods of soil Analysis, Part 2, pp. 403–430. American Society of Agronomy, Madison (1982)Google Scholar
  21. 21.
    Association Française de la Normalisation (AFNOR), Microbiologie des aliments-Dénombrement des levures et moisissures par comptage des colonies à 25 °C-Méthode de routine (NF V08-059). (1995)Google Scholar
  22. 22.
    García, C., Hernández, T., Costa, F., Ceccanti, B., Masciandaro, G.: The dehydrogenase activity of soil as an ecological marker in processes of perturbed system regeneration. In: Gallardo-Lancho, J. (Ed.), In: Proceedings of the XI International Symposium of Environmental Biochemistry, Salamanca. pp. 89–100: (1993)Google Scholar
  23. 23.
    Nannipieri, P., Ceccanti, B., Cervelli, S., Matarese, E.: Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. J. 44, 1011–1016 (1980)CrossRefGoogle Scholar
  24. 24.
    Tabatabai, M.A.: Soil enzymes. In: Page, A.L., Miller, E.M., Keeney D.R. (eds.) pp. 903–947. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. ASA, Madison (1982)Google Scholar
  25. 25.
    Conseil Oléicole International: Guide pour la détermination des caractéristiques des olives à huile. Norme COI/OH/DOC, no 1 (2011)Google Scholar
  26. 26.
    European Union Commission. Regulation EEC 2568/91 on the characteristics of olive oils and their analytical methods. The Official Journal of the European Union 295/57-17/12/1991Google Scholar
  27. 27.
    Vazquez Roncero, A., Janer del Valle, C., Janer del Valle, M.L.: Determination de polifenoles totales del aceite de oliva. Grasas Aceites 24, 350–357 (1973)Google Scholar
  28. 28.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16, 144–158 (1965)Google Scholar
  29. 29.
    Conseil Oléicole International, Norme commerciale applicable aux huiles d’olive et aux huiles de grignons d’olive. Norme COI/T.15/NC No 3 (2015)Google Scholar
  30. 30.
    Potenz, D., Rigetti, V., Valpolicella, M.: Effetto inquinante delle acque reflue della lavorazione delle olive su terreno agrario. Inquinamento 3, 65–68 (1980)Google Scholar
  31. 31.
    Chartzoulakis, K., Psarras, G., Moutsopoulou, M., Stefanoudaki, E.: Application of olive mill wastewater to a Cretan olive orchard: effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 138, 293–298 (2010)CrossRefGoogle Scholar
  32. 32.
    Di Serio, M.G., Lanza, B., Mucciarella, M.R., Russi, F., Iannucci, E., Marfisi, P., Madeo, A.: Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int. Biodeterior. Biodegrad. 62, 403–407 (2008)CrossRefGoogle Scholar
  33. 33.
    Jarboui, R., Sellami, F., Kharroubi, A., Gharsallah, N., Ammar, E.: Olive mill wastewater stabilization in open air ponds: impact on clay–sandy soil. Bioresour. Technol. 99, 7699–7708 (2008)CrossRefGoogle Scholar
  34. 34.
    Jarboui, R., Magdich, S., Jarboui., A.R., Gargouri, A., Gharsallah, N., Ammar, E.: Aspergillus niger P6 and Rhodotorula mucilaginosa CH4 used for olive mill wastewater (OMW) biological treatment in single pure and successive cultures. Environ. Technol. 34, 629–636 (2013)CrossRefGoogle Scholar
  35. 35.
    Hachicha, S., Sellami, F., Medhioub, K., Hachicha, R., Ammar, E.: Quality assessment of composts prepared with olive mill wastewater and agricultural wastes. Waste Manag. 28, 2593–2603 (2008)CrossRefGoogle Scholar
  36. 36.
    Belaqziz, M., El-Abbassi, A., Lakha, E., Agrafioti, E., Galanakis, C.M.: Agronomic application of olive mill wastewater: effects on maize production and soil properties. J. Environ. Manag. 171, 158–165 (2016)CrossRefGoogle Scholar
  37. 37.
    Moraetis, D., Stamati, F.E., Nikolaidis, N.P., Kalogerakis, N.: Olive mill wastewater irrigation of maize: impacts on soil and groundwater. Agric. Water Manag. 98, 1125–1132 (2011)CrossRefGoogle Scholar
  38. 38.
    Madejón, E., Burgos, P., López, R., Cabrera, F.: Agricultural use of three organic residues: effect on orange production on properties of a soil of the comarca costa de Huelva. Nutr. Cycl Agroecosyst. 65, 281–288 (2003)CrossRefGoogle Scholar
  39. 39.
    Montemurro, F., Convertini, G., Ferri, D.: Mill waste water and olive pomace compost as amendments for rye-grass. Agronomie 24, 481–486 (2004)CrossRefGoogle Scholar
  40. 40.
    Saviozzi, A., Levi-Minizi, R., Riffaldi, R., Lupetti, A.: Effetti dello spandimento di acque di vegetazione sul terreno agrario. Agrochimica 35, 135–148 (1991)Google Scholar
  41. 41.
    Matthies, C., Erhard, H.P., Drake, H.L.: Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J. Basic Microbiol. 37, 335–343 (1997)CrossRefGoogle Scholar
  42. 42.
    Amaral, C., Lucas, M.S., Coutinho, J., Crespei, A.L., Do Rosario Anjos, M., Pais, C.: Microbiological and physico-chemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Bioresour. Technol. 99, 7215–7223 (2008)CrossRefGoogle Scholar
  43. 43.
    Skopp, J., Jawson, M.D., Doran, J.W.: Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54, 1619–1625 (1990)CrossRefGoogle Scholar
  44. 44.
    Tardioli, S., Bannè, E.T.G., Santori, F.: Species-specific selection on soil fungal population after olive mill waste-water treatment. Chemoshpere 34, 2329–2336 (1997)CrossRefGoogle Scholar
  45. 45.
    Bodini, S.F., Cicalini, A.R., Santori, F.: Rhizosphere dynamics during phytoremediation of olive mill wastewater. Bioresour. Technol. 102, 4383–4389 (2011)CrossRefGoogle Scholar
  46. 46.
    Moreno, B., Vivas, A., Nogales, R., Macci, C., Masciandaro, G., Benitez, E.: Restoring biochemical activity and bacterial diversity in a trichloroethylene contaminated soil: the reclamation effect of vermicomposted olive wastes. Environ. Sci. Pollut. Res. 16, 253–264 (2009)CrossRefGoogle Scholar
  47. 47.
    Benitez, E., Melgar, R., Sainz, H., Gŏmez, M., Nogales, R.: Enzymes activities in rhizosphere of pepper (Capsicum annuun L.) grown with olive cake mulches. Soil Biol. Biochem. 32, 1829–1835 (2000)CrossRefGoogle Scholar
  48. 48.
    López-Piñeiro, A., Albarrán, A., Rato Nunes, J.M., Peňa, A.D., Cabrera, D.: Long-term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Till. Res. 114, 175–182 (2011)CrossRefGoogle Scholar
  49. 49.
    Jorge-Mardomingo, I., Soler-Rovira, P., Ángel Casermeiro, M., Teresa de la Cruz, M., Polo, A.: Seasonal changes in microbial activity in a semiarid soil after application of a high dose of different organic amendments. Geoderma 206, 40–48 (2013)CrossRefGoogle Scholar
  50. 50.
    Tabatabai, M.A.: Soil enzymes. In: Weaver R.W., Angel J.S., Bottomley P.S. (Eds.) Methods of Soil Analysis. Part 2: Microbial and Biochemical Properties, 775–833, Soil Science Society America, Madison (1994)Google Scholar
  51. 51.
    Stott, D.E., Andrews, S.S., Liebig, M.A., Wienhold, B.J., Karlen, D.L.: Evaluation of β-glucosidase activity as a soil quality indicator for the soil management. Soil Sci. Soc. Am. J. 74, 107–119 (2010)CrossRefGoogle Scholar
  52. 52.
    Dick, R.P., Breakwell, D.P., Turco, R.F.: Soil enzyme activities and biodiversity measurements as integrative microbiological indicators, In: Doran J.W., Jones A.J. (eds.) Methods for Assessing Soil Quality Special Publication No. 49, 247–271, Soil Science Society America, Madison (1996)Google Scholar
  53. 53.
    Perucci, P.: Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soils 14, 54–60 (1992)CrossRefGoogle Scholar
  54. 54.
    Lagomarsino, A., Di Tizio, A., Marinari, S., Moscatelli, M.C., Mancinelli, R., Grego, S.: Soil organic matter pools under different system management and tillage level in a three-year crop rotation. Agrochimica 52, 395–406 (2008)Google Scholar
  55. 55.
    Moscatelli, M.C., Lagomarsino, A., Garzillo, A.M.V., Pignataro, A., Gregod, S.: Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches. Ecol. Indic. 13, 322–327 (2012)CrossRefGoogle Scholar
  56. 56.
    Guo, H., Yao, J., Cai, M., Qian, Y., Guo, Y., Richnow, H.H., Blake, R.E., Doni, S.,. Ceccanti, B.: Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 87, 1273–1280 (2012)CrossRefGoogle Scholar
  57. 57.
    Munir, J.M.R., Ammar, A.A., Hanan, I.M.: Treated olive mill wastewater effects on soil properties and plant growth. Air Soil Pollut. 227, 135–145 (2016)CrossRefGoogle Scholar
  58. 58.
    Altieri, R., Esposito, A.: Olive orchard amended with two experimental olive mill wastes mixtures: Effects on soil organic carbon, plant growth and yield. Bioresour. Technol. 99, 8390–8393 (2008)CrossRefGoogle Scholar
  59. 59.
    Nasini, L., Gigliotti, G., Balduccini, M.A., Federici, E., Cenci, G., Proietti, P.: Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agric. Ecosyst. Environ. 164, 292–297 (2013)CrossRefGoogle Scholar
  60. 60.
    Ben Youssef, N., Youssef, B., Abaza, N., Naeit Mohamed, L., Debbech, S., Abdelly, N.: C.: Influence of the site of cultivation on Chétoui olive (Olea europaea L.) oil quality. Plant Prod. Sci. 15, 228–237 (2012)CrossRefGoogle Scholar
  61. 61.
    Ayoub, S., Al-Absi, K., Al-Shdiefat, S., Al-Majali, D., Hijazean, D.: Effect of olive mill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci. Hortic. 175, 160–166 (2014)CrossRefGoogle Scholar
  62. 62.
    Proietti, P., Federici, E., Fidati, L., Scargetta, S., Massaccesi, L., Nasini, L., Regni, L., Ricci, A., Cenci, G., Gigliotti, G.: Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agric. Ecosyst. Environ. 207, 51–60 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Salwa Magdich
    • 1
    • 2
  • Béchir Ben Rouina
    • 2
  • Emna Ammar
    • 1
  1. 1.Research Unit «Coastal and Urban Environments», National Engineering School of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Laboratory of Improvement of Olive and Fruit Trees’ ProductivityOlive Tree Institute of SfaxSfaxTunisia

Personalised recommendations