Advertisement

Valorization of Post-consumer PP by (Un)modified Tunisian Clay Nanoparticles Incorporation

  • K. Zdiri
  • A. Elamri
  • M. Hamdaoui
  • O. Harzallah
  • N. Khenoussi
  • J. Brendlé
Original Paper

Abstract

Modified (or unmodified) Tunisian clay nanoparticles were incorporated as nanofillers in post-consumer polypropylene (PCPP) polymer matrix in order to improve its inherent properties. PCPP loaded with Na-clay or organoclay nanocomposites were elaborated by melt intercalation method. Morphological, thermal and rheological properties of prepared nanocomposites were then evaluated. SEM observations showed better nanoparticles dispersion when PCPP was filled with organoclay compared to Na-clay. According to FTIR analysis, the increase of PCPP band intensity is much higher when using organoclay, suggesting that the nanocomposites might have more intercalation of organoclay aggregates than in the case of filled with Na-clay. Thermal gravimetric and thermal degradation analyses results confirmed that the addition of modified clay allows better thermal stability than PCPP filled with unmodified clay. This result was confirmed by DSC analysis. We deduced from the rheological analysis that PCPP storage modulus G′ and loss modulus G″ increased with the addition of clay nanoparticles. This increase was higher when the organo-modified clay was dispersed into the PCPP matrix, demonstrating the reinforcing effect of the latter on PCPP polymer.

Graphical Abstract

Storage modulus of pure PCPP and PCPP/clay nanocomposites.

Keywords

Post-consumer PP Clay Nanofiller Rheological Nanocomposites 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hassen, A.A., Dizbay-Onat, M., Bansal, D., Bayush, T., Vaidya, U.: Utilization of chicken eggshell waste as a bio-filler for thermoplastic polymers: thermal and mechanical characterization of polypropylene filled with naturally derived CaCO3. Polym. Polym. Compos. 23, 653 (2015)Google Scholar
  2. 2.
    Jayaramudu, J., Jeevan, P., Rajkumar, K., Manohar, N., Suchismita, S., Siva, M.R., Babul, R.A., Suprakas, S.R., Rotimi, S.: Recycled polypropylene/boehmite alumina nanocomposites: enhanced structure, thermal and mechanical properties. Int. J. Adv. Res. 5(1), 1021–1028 (2017)CrossRefGoogle Scholar
  3. 3.
    Majumdar, J., Cser, F., Jollands, M.C., Shanks, R.A.: Thermal properties of polypropylene post-consumer waste (PP PCW). J. Therm. Anal. Calorim. 78(3), 849–863 (2004)CrossRefGoogle Scholar
  4. 4.
    Zdiri, K., Elamri, A., Hamdaoui, M., Harzallah, O., Khenoussi, N., Brendlé, J.: Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem. Lett. Rev. 11(3), 296–311 (2018)CrossRefGoogle Scholar
  5. 5.
    Le Pluart, L.: Nanocomposites epoxyde/amine/montmorillonite. PhD Thesis, Institut National des Sciences Appliquées de Lyon, France, 2002Google Scholar
  6. 6.
    Chandran, N., Chandra sekhara kurp, S.: Compatibilizing action and localization of clay in polypropylene/natural rubber (PP/NR) blend. RSC Adv. 5, 86265–86273 (2015)CrossRefGoogle Scholar
  7. 7.
    Zachariah, A.K., Geethamma, V.G., Chandra, A.K., Mohammed, P., Thomas, S.: Rheological behaviour of clay incorporated natural rubber and chlorobutyl rubber nanocomposites. RSC Adv. 4, 58047–58058 (2014)CrossRefGoogle Scholar
  8. 8.
    Swapna, V.P., Stephen, R., Greeshma, T., Sharan Dev, C., Sreekala, M.S.: Mechanical and swelling behavior of green nanocomposites of natural rubber latex and tubular shaped halloysite nano clay. Polym. Compos. 37(2), 602–611 (2014)CrossRefGoogle Scholar
  9. 9.
    Teh, P.L., Ishak, Z., Karger-Kocsis, J.: Cure characteristics and mechanical properties of natural rubber/organoclay nanocomposites. J. Teknol. 39, 539–550 (2012)Google Scholar
  10. 10.
    Jlassi, K., Chandran, S., Poothanari, M.A., Benna-Zayani, M., Thomas, S., Chehimi, M.M.: Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir 32(14), 3514–3524 (2016)CrossRefGoogle Scholar
  11. 11.
    Maria, H.J., Lyczko, N., Nzihou, A., Joseph, K., Mathew, C.: Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites. Appl. Clay Sci. 87, 120–128 (2014)CrossRefGoogle Scholar
  12. 12.
    Gamoudi, S., Srasra, E.: Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl. Clay Sci. 146, 162–166 (2017)CrossRefGoogle Scholar
  13. 13.
    Salem, N., Ltifi, M., Hassis, H.: Characterisation of lightweight concrete of Tunisian expanded clay: mechanical and durability study. Eur. J. Environ. Civ. Eng. 21, 670–695 (2016)Google Scholar
  14. 14.
    Ben Messaoud, I., Hamdi, N., Srasra, E.: Physico-chemical properties of geopolymer binders made from Tunisian clay. Mater. Focus 7, 114–120 (2018)Google Scholar
  15. 15.
    Dhouib, S., Abid, K., Sakli, F.: Study of thermal behaviour of fabric coated with nanocomposite polyacrylate/clay. Res. J. Text. Appar. 16, 101–110 (2012)CrossRefGoogle Scholar
  16. 16.
    Samal, S.K., Nayak, S., Mohanty, S.: Polypropylene nanocomposites: effect of organo-modified layered silicates on mechanical, thermal and morphological performance. J. Thermoplast. Compos. Mater. 8, 243–263 (2008)CrossRefGoogle Scholar
  17. 17.
    Lagaly, G.: Characterization of clays by organic compounds. Clay Miner. 16, 1–21 (1981)CrossRefGoogle Scholar
  18. 18.
    Amari, A., Gannouni, A., Chlendi, M.: Optimization by response surface method for adsorption onto prepared acid activated clay. Can. J. Chem. Eng. 86, 1093–1102 (2008)CrossRefGoogle Scholar
  19. 19.
    Agha, M.A., Ferrell, R.E., Hart, G.F., Abu El Ghar, M.S., Abdel-Motelib, A.: Physical properties and Na-activation of Egyptian bentonitic clays for appraisal of industrial applications. Appl. Clay Sci. 131, 74–83 (2016)CrossRefGoogle Scholar
  20. 20.
    Ben Othman, A., Ayari, F., Mezguich, S., Trabelsi, M.: Physico-chemical properties of synthesized organobentonite. Int. J. Eng. Res. Technol. 5, 715–720 (2016)Google Scholar
  21. 21.
    Komadel, P., Madejová, J.: Chap. 10.1—Acid activation of clay minerals. In: Bergaya, F., Lagaly, G. (eds.) Developments in clay science, vol. 5, pp. 385–409. Elsevier, Amsterdam (2013)Google Scholar
  22. 22.
    Carrado, K., Komadel, P.: acid activation of bentonites and polymer clay nanocomposites. Elements 5, 111–116 (2009)CrossRefGoogle Scholar
  23. 23.
    Kooli, F., Yan, L., Tan, S.X., Zheng, J.: Organoclays from alkaline-treated acid-activated clays: properties and thermal stability. J. Therm. Anal. Calorim. 115(2), 1465–1475 (2014)CrossRefGoogle Scholar
  24. 24.
    De Paiva, L.B., Morales, A.R., Díaz, F.R.V.: Organoclays: properties, preparation and applications. Appl. Clay Sci. 42, 8–24 (2008)CrossRefGoogle Scholar
  25. 25.
    Ali, S., Teruo, H., Tamao, H., Fakher, J., Norio, T.: Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chem. Eng. J. 172, 37–46 (2011)CrossRefGoogle Scholar
  26. 26.
    Gamoudi, S., Frini, N., Srasra, E.: Solid-state intercalation of cationic surfactants into Tunisian smectites. Clay Miner. 48, 583–593 (2013)CrossRefGoogle Scholar
  27. 27.
    Chtourou, M., Frikha, M.H., Trabelsi, M.: Modified smectitic Tunisian clays used in the formulation of high performance lubricating greases. Appl. Clay Sci. 32, 210–216 (2006)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y.Q., Lee, J.H., Rhee, J.M., Rhee, K.Y.: Polypropylene–clay nanocomposites prepared by in situ grafting-intercalating in melt. Compos. Sci. Technol. 64, 1383–1389 (2004)CrossRefGoogle Scholar
  29. 29.
    Dardir, F.M., Mohamed, A.S., Abukhadra, M.R., Ahmed, E.A., Soliman, M.F.: Cosmetic and pharmaceutical qualifications of Egyptian bentonite and its suitability as drug carrier for Praziquantel drug. Eur. J. Pharm. Sci. 115, 320–329 (2018)CrossRefGoogle Scholar
  30. 30.
    Ellouze, R., Gharsalli, J., Turki, F., Mhiri, T., Zouari, H.: The pillaring of natural Tunisian clays from Jebel Nahli for eventual industrial applications. Verres Céram. Compos. 3, 17–23 (2014)Google Scholar
  31. 31.
    Karasa, J., Ivanova, K.: Obtaining and organophilisation of smectite clays with reduced iron oxide content. Mater. Sci. Appl. Chem. 33, 22–25 (2016)Google Scholar
  32. 32.
    Mounir, S., Maaloufa, Y., Cherki, A., Khabbazi, A.: Thermal properties of the composite material clay/granular cork. Constr. Build. Mater. 70, 183–190 (2014)CrossRefGoogle Scholar
  33. 33.
    Jaber, M., Brendlé, J.: Organoclays: preparation, properties and applications. In: Ordered porous solids, pp. 31–49. Elsevier, New York (2006)Google Scholar
  34. 34.
    Sharma, S.K., Nayak, S.K.: Surface modified clay/polypropylene (PP) nanocomposites: effect on physico-mechanical, thermal and morphological properties. Polym. Degrad. Stab. 94, 132–138 (2009)CrossRefGoogle Scholar
  35. 35.
    Effenberger, F., Schweizer, M., Mohamed, W.S.: Effect of montmorillonite clay nanoparticles on the properties of polypropylene fibres. Polym. Plast. Technol. Eng. 49, 525–530 (2010)CrossRefGoogle Scholar
  36. 36.
    Razafimahefa, L., Chlebicki, S., Vroman, I., Devaux, E.: Effect of nanoclays on the dyeability of polypropylene nanocomposite fibres. Color. Technol. 124, 86–91 (2008)CrossRefGoogle Scholar
  37. 37.
    Luijsterburg, B.J.: Mechanical recycling of plastic packaging waste. Technische Universiteit Eindhoven, Eindhoven (2015).  https://doi.org/10.6100/IR783771 Google Scholar
  38. 38.
    Bahrami, S.H., Mirzaie, Z.: Polypropylene/modified nanoclay composite-processing and dyeability properties. World Appl. Sci. J. 13(3), 493–501 (2011)Google Scholar
  39. 39.
    Heper, M., Türker, L., Kincal, N.S.J.: Sodium, ammonium, calcium, and magnesium forms of zeolite Y for the adsorption of glucose and fructose from aqueous solutions. J. Colloid Interface Sci. 11, 306 (2007)Google Scholar
  40. 40.
    Effenberger, F., Schweizer, M., Mohamed, W.S.J.: Synthesis and characterization of some polyacrylate/montmorillonite nanocomposites by in situ emulsion polymerization using redox initiation system. Appl. Polym. Sci. 112, 1572 (2009)CrossRefGoogle Scholar
  41. 41.
    Lei, S.G., Hoa, S.V., Ton-That, M.T.: Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos. Sci. Technol. 66, 1274–1279 (2006)CrossRefGoogle Scholar
  42. 42.
    Pozsgay, A., Frater, T., Papp, L., Sajo, L., Pukanszky, I.B.: Nucleating effect of montmorillonite nanoparticles in polypropylene. J. Macromol. Sci. B 41, 1249 (2002)CrossRefGoogle Scholar
  43. 43.
    Wang, Y., Chen, F.B., Li, Y.C., Wu, K.C.: Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilisers. Compos. B 35, 111–124 (2004)CrossRefGoogle Scholar
  44. 44.
    Ray, S.S., Okamoto, M.: Polymer layered silicate nanocomposites: a review from preparation to processing. Progr. Polym. Sci. 28, 1539 (2003)CrossRefGoogle Scholar
  45. 45.
    Ataeefard, M., Moradian, S.: Polypropylene/organoclay nanocomposites: effects of clay content on properties. Polym. Plast. Technol. Eng. 50(7), 732–739 (2011)CrossRefGoogle Scholar
  46. 46.
    Janigova, I., Lednicky, F., Moskova, D.J., Chodak, I.: Nanocomposites with biodegradable polycaprolactone matrix. Macromol. Symp. 301, 1–8 (2011)CrossRefGoogle Scholar
  47. 47.
    Tri, P.N., Guinault, A., Sollogoub, C.: Élaboration et propriétés des composites polypropylène recyclé/fibres de bambou. Matér. Tech. 100, 413–423 (2012)CrossRefGoogle Scholar
  48. 48.
    Josh, M., Butola, B.S., Simon, G.: Kukaleva, N.: Rheological and viscoelastic behavior of HDPE/octamethyl-POSS nanocomposites. Macromolecules 39, 1839–1849 (2006)CrossRefGoogle Scholar
  49. 49.
    Di Pasquale, G., Pollicino, A.: Properties of polystyrene clay nanocomposites prepared using two new imidazolium surfactants. J. Nanomater. 2017, 1–11 (2017)CrossRefGoogle Scholar
  50. 50.
    Luijsterburg, B.J., Jobse, P.S., Spoelstra, A.B., Goossens, J.G.P.: Solid-state drawing of post-consumer isotactic poly(propylene): effect of melt filtration and carbon black on structural and mechanical properties. Waste Manage. 54, 53–61 (2016)CrossRefGoogle Scholar
  51. 51.
    Banerjee, S., Joshi, M., Ghosh, A.K.: Investigations on clay dispersion in polypropylene/clay nanocomposites using rheological and microscopic analysis. J. Appl. Polym. Sci. 130, 4464–4473 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • K. Zdiri
    • 1
  • A. Elamri
    • 1
  • M. Hamdaoui
    • 1
  • O. Harzallah
    • 2
  • N. Khenoussi
    • 2
  • J. Brendlé
    • 3
  1. 1.ENIM - Unité de Recherche Matériaux et Procédés TextilesMonastirTunisia
  2. 2.Laboratoire de Physique et Mécanique Textiles EA 4365Mulhouse CedexFrance
  3. 3.Pôle Matériaux à Porosité Contrôlée, IS2M, CNRS-UMR 7361MulhouseFrance

Personalised recommendations