One-Step Synthesis of Carbon-Coated Na3(VOPO4)2F Using Biomass as a Reducing Agent and Their Electrochemical Properties

  • Zizheng Tong
  • Yuruo Qi
  • Junmei ZhaoEmail author
  • Lilu Liu
  • Xing Shen
  • Huizhou LiuEmail author
Original Paper


In this work, a one-step hydrothermal strategy has been developed for the synthesis of carbon-coated Na3(VOPO4)2F with the aid of biomass (e.g. glucose, fructose or starch), where biomass plays the key role of carbon source and reducing agent for reducing vanadium(V) to vanadium(IV). The effect of different biomass on the morphologies has been examined. Furthermore, the synthetic mechanism was deduced by investigating the impact of hydrothermal time on the synthesis. In addition, the vanadium oxidation state has been finally confirmed by XPS and UV–Vis. The as-synthesized carbon-coated Na3(VOPO4)2F shows a superior long-term cycling performance, such as the capacity retentions are higher than 70% after 1400 cycles at a current rate of 5 C. The higher content of carbon will lead to the better rate capability. The present study suggests that the one-step hydrothermal technique using biomass as a reducing agent appears to be a facile and green low-cost approach to prepare the promising cathode material Na3(VOPO4)2F.


Sodium vanadium fluorophosphates Bio-mass Hydrothermal-carbon coating Long cycle Na-ion batteries 



This work was supported by the National Key Technologies R&D Program, China (2016YFB0901500) and the National Natural Science Foundation of China (51672275). This work was also supported by Beijing Natural Science Foundation (2182074).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

12649_2018_426_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1857 KB)


  1. 1.
    Tarascon, J.M.: Is lithium the new gold? Nat. Chem. 2, 510–510 (2010)CrossRefGoogle Scholar
  2. 2.
    Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., Rojo, T.: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)CrossRefGoogle Scholar
  3. 3.
    Massa, W., Yakubovich, O.V., Dimitrova, O.V.: Crystal structure of a new sodium vanadyl(IV) fluoride phosphate. Solid State Sci. 4, 495–501 (2002)CrossRefGoogle Scholar
  4. 4.
    Deng, G., Chao, D., Guo, Y., Chen, Z., Wang, H., Savilov, S.V., Lin, J., Shen, Z.X.: Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery. Energy Storage Mater. 5, 198–204 (2016)CrossRefGoogle Scholar
  5. 5.
    Qi, Y., Mu, L., Zhao, J., Hu, Y.S., Liu, H., Dai, S.: Superior Na-storage performance of low-temperature-synthesized Na3(VO(1–x)PO4)2F(1+2x) (0 ≤ x ≤ 1) nanoparticles for Na-ion batteries. Angew. Chem. Int Ed 54, 9911–9916 (2015)CrossRefGoogle Scholar
  6. 6.
    Barker, J., Gover, R., Burns, P., Bryan, A.: Hybrid-ion a lithium-ion cell based on a sodium insertion material. Electrochem. Solid-State Lett. 9, A190–A192 (2006)CrossRefGoogle Scholar
  7. 7.
    Gover, R., Bryan, A., Burns, P., Barker, J.: The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ion. 177, 1495–1500 (2006)CrossRefGoogle Scholar
  8. 8.
    Jiang, T., Chen, G., Li, A., Wang, C., Wei, Y.: Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloy Compd. 478, 604–607 (2009)CrossRefGoogle Scholar
  9. 9.
    Le Meins, J.M., Crosnier-Lopez, M.P., Hemon-Ribaud, A., Courbion, G.: Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148, 260–277 (1999)CrossRefGoogle Scholar
  10. 10.
    Park, Y.U., Seo, D.H., Kim, H., Kim, J., Lee, S., Kim, B., Kang, K.: A family of high-performance cathode materials for Na-ion batteries, Na3(VO1–xPO4)2F1+2x (0 ≤ x ≤ 1): combined first-principles and experimental study. Adv. Funct. Mater. 24, 4603–4614 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhao, J., He, J., Ding, X., Zhou, J., Ma, Y.O., Wu, S., Huang, R.: A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 195, 6854–6859 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, Z., Fan, Y., Peng, W., Wang, Z., Guo, H., Li, X., Wang, J.: Mechanical activation assisted soft chemical synthesis of Na-doped lithium vanadium fluorophosphates with improved lithium storage properties. Ceram. Int. 41, 4267–4271 (2014)CrossRefGoogle Scholar
  13. 13.
    Ouyan, F., Wang, Z.Z., Zhou, Y., Cheng, Z., Lu, Z.H., Yang, Z., Tao, D.J.: Highly efficient and selective synthesis of dibutyl carbonate via the synergistic dual activation catalysis of tetraethylammonium prolinate ionic liquids. Appl. Catal. A Gen. 492(492), 177–183 (2015)CrossRefGoogle Scholar
  14. 14.
    Huang, W., Tao, D.J., Chen, F.F., Hui, W., Zhu, J., Yan, Z.: Synthesis of ditetrahydrofurfuryl carbonate as a fuel additive catalyzed by aminopolycarboxylate ionic liquids. Catal Lett 147(6), 1347–1354 (2017)CrossRefGoogle Scholar
  15. 15.
    Chen, F.F., Huang, K., Zhou, Y., Tian, Z.Q., Zhu, X., Tao, D.J., Jiang, D., Dai, S.: Multi-molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids. Angew. Chem. 128(25), 7282–7286 (2016)CrossRefGoogle Scholar
  16. 16.
    Tao, D.J., Chen, F.F., Tian, Z.Q., Huang, K., Mahurin, S.M., Jiang, D.E., Dai, S.: Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions. Angew. Chem. 56(24), 6843–6847 (2017)CrossRefGoogle Scholar
  17. 17.
    Larcher, D., Tarascon, J.: Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2014)CrossRefGoogle Scholar
  18. 18.
    Xu, M., Wang, L., Zhao, X., Song, J., Xie, H., Lu, Y., Goodenough, J.B.: Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Phys. Chem. Chem. Phys. 15, 13032–13037 (2013)CrossRefGoogle Scholar
  19. 19.
    Guo, J.Z., Wang, P.F., Wu, X.L., Zhang, X.H., Yan, Q., Chen, H., Zhang, J.P., Guo, Y.G.: High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv. Mater. 29, 1701968 (2017)CrossRefGoogle Scholar
  20. 20.
    Titirici, M.M., Antonietti, M.: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 39, 103–116 (2010)CrossRefGoogle Scholar
  21. 21.
    Titirici, M.M., Antonietti, M., Baccile, N.: Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem. 10, 204–1212 (2008)CrossRefGoogle Scholar
  22. 22.
    Wang, Q., Li, H., Chen, L., Huang, X.: Monodispersed hard carbon spherules with uniform nanopores. Carbon 39, 2211–2214 (2001)CrossRefGoogle Scholar
  23. 23.
    Wang, F., Pang, L., Jiang, Y., Chen, B., Lin, D., Lun, N., Zhu, H., Liu, R., Meng, X., Wang, Y., Bai, Y., Yin, L.: Simple synthesis of hollow carbon spheres from glucose. Mater. Lett. 63, 2564–2566 (2009)CrossRefGoogle Scholar
  24. 24.
    Gan, T., Shi, Z., Wang, K., Chen, Y., Sun, J., Liu, Y.: Size-controlled core–shell-structured Ag@carbon spheres for electrochemical sensing of bisphenol A. J. Solid State Electrochem. 19(8), 2299–2309 (2015)CrossRefGoogle Scholar
  25. 25.
    Yan, Y., Li, K., Zhao, J., Yang, Y., Lee, J.M.: Nanobelt-arrayed vanadium oxide hierarchical microspheres as catalysts for selective oxidation of 5-hydroxymethylfurfural toward 2,5-diformylfuran. Appl. Catal. B Environ. 207, 358–365 (2017)CrossRefGoogle Scholar
  26. 26.
    Zhao, J., Pan, H., He, X., Wang, Y., Gu, L., Hu, Y.S., Chen, L., Liu, H., Dai, S.: Size-controlled synthesis and morphology evolution of bismuth trifluoride nanocrystals via a novel solvent extraction route. Nanoscale 5, 518–522 (2013)CrossRefGoogle Scholar
  27. 27.
    Qi, Y.R., Mu, L.Q., Zhao, J.M., Hu, Y.S., Liu, H.Z., Dai, S.: pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A 4, 7178–7184 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, F., Han, Y., Lim, C.S., Lu, Y., Wang, J., Xu, J., Chen, H., Zhang, C., Hong, M., Liu, X.: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations