Rice Husk-Derived Silica as a Support for Zirconocene/MMAO Catalyst in Ethylene Polymerization

  • Sineenart Jamnongphol
  • Adisak Jaturapiree
  • Kanjarat Sukrat
  • Thanunya Saowapark
  • Ekrachan ChaichanaEmail author
  • Bunjerd Jongsomjit
Original Paper


Rice husk is an agricultural waste abundantly available from rice production. It was due to the high content of silica (SiO2) inside rice husk, burning it under the control condition provides ash with the silica content up to 97% which can be simultaneously or consequently extracted to obtain rice husk-derived silica (RHS). In order to valorize the RHS, in this study it was used as a support for zirconocene/MMAO catalyst in ethylene polymerization, compared with commercial silica (CMS). It was found that rice husk-derived silica (RHS) has a larger surface area and lower amount of impurities than CMS. After immobilizing MMAO cocatalyst onto the silicas, it was observed that both silicas exhibit good distribution of MMAO all over the particles, but RHS has a higher content of MMAO. When using both silicas in the polymerization systems, it was observed that RHS gave a higher catalytic activity to the polymerization system than CMS (202 and 150 kg pol/mol Zr h). This is due to RHS having the lower amount of impurities especially Na2O which remains only in CMS from the production of commercial silica. The polymer obtained from the polymerization system with RHS has a good morphology suggesting that RHS still retains the advantage of providing a polymer with a good morphology as same as the conventional silica supports.

Graphical Abstract


Rice husk Silica Zirconocene Polymerization 



The authors thank the Grant for International Research Integration: Chula Research Scholar, Ratchadaphiseksomphot Endowment Fund, and the National Research Council of Thailand (NRCT) for the financial support of this project.


  1. 1.
    Office of Agricultural Economics: Rice Production. Office of Agricultural Economics, Bangkok (2016)Google Scholar
  2. 2.
    Santasnachok, C., Kurniawan, W., Hinode, H.: The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining. J. Environ. Chem. Eng. 3, 2115–2126 (2015)CrossRefGoogle Scholar
  3. 3.
    Pode, R.: Potential applications of rice husk ash waste from rice husk biomass power plant. Renew. Sustain. Energy Rev. 53, 1468–1485 (2015)CrossRefGoogle Scholar
  4. 4.
    Berlin, M., Allen, J., Kailasam, V., Rosenberg, D., Rosenberg, E.: Nanoporous silica polyamine composites for metal ion capture from rice hull ash. Appl. Organomet. Chem. 25, 530–536 (2011)CrossRefGoogle Scholar
  5. 5.
    Feng, Q., Lin, Q., Gong, F., Sugita, S., Shoya, M.: Adsorption of lead and mercury by rice husk ash. J. Colloid Interface Sci. 278, 1–8 (2004)CrossRefGoogle Scholar
  6. 6.
    Shan, W., Zhao, Z., Fang, D., Lou, Z., Xu, J., Yue, S., Biswas, B.K., Xiong, Y.: Investigation on the selective adsorption of Mo(VI) by using modified rice husk and corn straw. Waste Biomass Valoriz. 4, 385–393 (2013)CrossRefGoogle Scholar
  7. 7.
    Farooque, K.N., Zaman, M., Halim, E., Islam, S., Hossain, M., Mollah, Y.A., Mahmood, A.J.: Characterization and utilization of rice husk ash (RHA) from rice mill of Bangladesh. J. Sci. Ind. Res. 44, 157–162 (2009)Google Scholar
  8. 8.
    Hossain, T., Sarker, S.K., Basak, B.C.: Utilization potential of rice husk ash as a construction material in rural areas. J. Civ. Eng. 39, 175–188 (2011)Google Scholar
  9. 9.
    Razia, B., Ahsan, H., Shah, M.: Effects of rice husk ash on the non autoclaved aerated concrete. Int. J. Eng. Innov. Res. 3, 116–121 (2014)Google Scholar
  10. 10.
    Eberemu, A.O., Amadi, A.A., Osinubi, K.J.: The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment applications. Waste Biomass Valoriz. 4, 309–323 (2013)CrossRefGoogle Scholar
  11. 11.
    Ruengsri, S., Insiripong, S., Sangwaranatee, N., Kaewkhao, J.: Development of barium borosilicate glasses for radiation shielding materials using rice husk ash as a silica source. Prog. Nucl. Energy 83, 99–104 (2015)CrossRefGoogle Scholar
  12. 12.
    Tuscharoen, S., Kaewkhao, J., Limkitjaroenporn, P., Limsuwan, P., Chewpraditkul, W.: Improvement of BaO:B2O3:fly ash glasses: radiation shielding, physical and optical properties. Ann. Nucl. Energy 49, 109–113 (2012)CrossRefGoogle Scholar
  13. 13.
    Tuscharoen, S., Kaewkhao, J., Limsuwan, P., Chewpraditkul, W.: Structural, optical and radiation shielding properties of BaO-B2O3-rice husk ash glasses. Procedia Eng. 32, 734–739 (2012)CrossRefGoogle Scholar
  14. 14.
    Fuad, M.Y.A., Ismail, Z., Mansor, M.S., Ishak, Z.A.M., Omar, A.K.M.: Mechanical properties of rice husk ash/polypropylene composites. Polym. J. 27, 1002–1015 (1995)CrossRefGoogle Scholar
  15. 15.
    Kanimozhi, K., Prabunathan, P., Selvaraj, V., Alagar, M.: Vinyl silane-functionalized rice husk ash-reinforced unsaturated polyester nanocomposites. RSC Adv. 4, 18157–18163 (2014)CrossRefGoogle Scholar
  16. 16.
    Arayapranee, W., Na-Ranong, N., Rempel, G.L.: Application of rice husk ash as fillers in the natural rubber industry. J. Appl. Polym. Sci. 98, 34–41 (2005)CrossRefGoogle Scholar
  17. 17.
    Sae-Oui, P., Rakdee, C., Thanmathorn, P.: Use of rice husk ash as filler in natural rubber vulcanizates: in comparison with other commercial fillers. J. Appl. Polym. Sci. 83, 2485–2493 (2002)CrossRefGoogle Scholar
  18. 18.
    Saowapark, T., Amphaiphan, U., Chaichana, E., Wongwitthayakool, P.: Enhancing properties of deproteinized natural rubber with rice husk ash silica for use as a dental material. Key Eng. Mater. 675–676, 564–568 (2016)CrossRefGoogle Scholar
  19. 19.
    Seddighi, M., Shirini, F., Mamaghani, M.: Sulfonated rice husk ash (RHA-SO3H) as a highly efficient and reusable catalyst for the synthesis of some bis-heterocyclic compounds. RSC Adv. 3, 24046–24053 (2013)CrossRefGoogle Scholar
  20. 20.
    Shirini, F., Mamaghani, M., Seddighi, M.: Facile synthesis of benzimidazole, benzoxazole, and benzothiazole derivatives catalyzed by sulfonated rice husk ash (RHA-SO3H) as an efficient solid acid catalyst. Res. Chem. Intermed. 41, 5611–5619 (2015)CrossRefGoogle Scholar
  21. 21.
    Hindryawati, N., Maniam, G.P., Karim, M.R., Chong, K.F.: Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Eng. Sci. Technol. Int. J. 17, 95–103 (2014)CrossRefGoogle Scholar
  22. 22.
    Khoshbin, R., Karimzadeh, R.: The beneficial use of ultrasound in free template synthesis of nanostructured ZSM-5 zeolite from rice husk ash used in catalytic cracking of light naphtha: effect of irradiation power. Adv. Powder Technol. 28, 973–982 (2017)CrossRefGoogle Scholar
  23. 23.
    Ginting, E.M., Wirjosentono, B., Bukit, N., Agusnar, H.: Preparation and characterization of rice husk ash as filler material in to nanoparticles on HDPE thermoplastic composites. Chem. Mater. Res. 6, 14–24 (2014)Google Scholar
  24. 24.
    Mazzara, C., Jupille, J., Flank, A.M., Lagarde, P.: Stereochemical order around sodium in amorphous silica. J. Phys. Chem. B 104, 3438–3445 (2000)CrossRefGoogle Scholar
  25. 25.
    Hagimoto, H., Shiono, T., Ikeda, T.: Supporting effects of methylaluminoxane on the living polymerization of propylene with a chelating (diamide)dimethyltitanium complex. Macromol. Chem. Phys. 205, 19–26 (2004)CrossRefGoogle Scholar
  26. 26.
    Ketloy, C., Jongsomjit, B., Praserthdam, P.: Characteristics and catalytic properties of [t-BuNSiMe2Flu] TiMe2/dMMAO catalyst dispersed on various supports towards ethylene/1-octene copolymerization. Appl. Catal. A 327, 270–277 (2007)CrossRefGoogle Scholar
  27. 27.
    Yang, L., Zhang, Y., Lv, R., Wang, J., Fu, X., Gu, W., Liu, X.: Serrated single-wall metal-organic nanotubes (SWMONTs) for benzene adsorption. CrystEngComm 17, 5625–5628 (2015)CrossRefGoogle Scholar
  28. 28.
    Young, N.C., Kumar, S., (eds.): Production of activated char and producer gas sewage sludge. In: Integrated Waste Management. In Tech, Shanghai (2011)Google Scholar
  29. 29.
    Chao, C., Praserthdam, P., Khorbunsongserm, S., Rempel, G.L.: Effects of TMA and MAO on ethylene-propylene copolymer using supported zirconocene catalysts. J. Macromol. Sci. A 40, 181–192 (2003)CrossRefGoogle Scholar
  30. 30.
    Arlman, E.J.: Ziegler-Natta catalysis II. Surface structure of layer-lattice transition metal chlorides. J. Catal. 3, 89–98 (1964)CrossRefGoogle Scholar
  31. 31.
    Arlman, E.J., Cossee, P.: Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl3AlEt3. J. Catal. 3, 99–104 (1964)CrossRefGoogle Scholar
  32. 32.
    Cossee, P.: Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. J. Catal. 3, 80–88 (1964)CrossRefGoogle Scholar
  33. 33.
    Silveira, F., Alves, M.d.C.M., Stedile, F.C., Pergher, S.B., Rigacci, A., Santos, J.H.: Z.d.: Effect of the silica texture on the structure of supported metallocene catalysts. J. Mol. Catal. A 298, 40–50 (2009)CrossRefGoogle Scholar
  34. 34.
    Chaichana, E., Shiono, T., Praserthdam, P., Jongsomjit, B.: A Comparative study of in situ and ex situ impregnation for LLDPE/silica composites production. Eng. J. 16, 27–36 (2011)CrossRefGoogle Scholar
  35. 35.
    Pothirat, T., Jongsomjit, B., Praserthdam, P.: Effect of Zr-modified SiO2-supported metallocene/MAO catalyst on copolymerization of ethylene/1-octene. Catal. Lett. 121, 266–273 (2008)CrossRefGoogle Scholar
  36. 36.
    Zheng, X., Smit, M., Chadwick, J.C., Loos, J.: Fragmentation behavior of silica-supported metallocene/MAO catalyst in the early stages of olefin polymerization. Macromolecules 38, 4673–4678 (2005)CrossRefGoogle Scholar
  37. 37.
    Brintzinger, H.H., Fischer, D., Mülhaupt, R., Rieger, B., Waymouth, R.M.: Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem. Int. Ed. 34, 1143–1170 (1995)CrossRefGoogle Scholar
  38. 38.
    Wang, Q., Hong, J., Fan, Z., Tao, R.: Ethyl-iso-butylaluminoxane activated metallocene catalyst for olefin polymerization. J. Polym. Sci. A 41, 998–1003 (2003)CrossRefGoogle Scholar
  39. 39.
    Chen, E.Y.-X., Marks, T.J.: Cocatalysts for metal-catalyzed olefin polymerization:‰ activators, activation processes, and structure-activity relationships. Chem. Rev. 100, 1391–1434 (2000)CrossRefGoogle Scholar
  40. 40.
    Basso, N.R.d.S., Galland, G.B., dos Santos, J.H.Z., Fim, F., Sauer, C., Carone, C.: Polymerization of ethylene by supported zirconium alkoxide complex. J. Appl. Polym. Sci. 118, 1561–1566 (2010)Google Scholar
  41. 41.
    Casagrande, A.C.A., Tavares, T.T.d.R., Kuhn, M.C.A., Casagrande, O.L., dos Santos, J.H.Z., Teranishi, T.: Tris(pyrazolyl)borate imido vanadium(V) compound immobilized on inorganic supports and its use in ethylene polymerization. J. Mol. Catal. A 212, 267–275 (2004)CrossRefGoogle Scholar
  42. 42.
    El-Shobaky, G.A., El-Nabarawy, T., Fagal, G.A.: Effect of sodium oxide-doping on surface and catalytic properties of CuO/Al2O3 solids. Appl. Catal. 52, 33–40 (1989)CrossRefGoogle Scholar
  43. 43.
    Bakar, R.A., Yahya, R., Gan, S.N.: Production of high purity amorphous silica from rice husk. Procedia Chem. 19, 189–195 (2016)CrossRefGoogle Scholar
  44. 44.
    Nie, L., de Souza, P.M., Noronha, F.B., An, W., Sooknoi, T., Resasco, D.E.: Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts. J. Mol. Catal. A 388, 47–55 (2014)CrossRefGoogle Scholar
  45. 45.
    Sitthisa, S., An, W., Resasco, D.E.: Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal. 284, 90–101 (2011)CrossRefGoogle Scholar
  46. 46.
    Romanelli, G., Pasquale, G., Sathicq, Á, Thomas, H., Autino, J., Vázquez, P.: Synthesis of chalcones catalyzed by aminopropylated silica sol-gel under solvent-free conditions. J. Mol. Catal. A 340, 24–32 (2011)CrossRefGoogle Scholar
  47. 47.
    Wongwaiwattanakul, P., Jongsomjit, B.: Copolymerization of ethylene/1-octene via different pore sized silica-based-supported zirconocene/dMMAO catalysts. Catal. Commun. 10, 118–122 (2008)CrossRefGoogle Scholar
  48. 48.
    Chaichana, E., Jongsomjit, B., Praserthdam, P.: Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chem. Eng. Sci. 62, 899–905 (2007)CrossRefGoogle Scholar
  49. 49.
    Hlatky, G.G.: Heterogeneous single-site catalysts for olefin polymerization. Chem. Rev. 100, 1347–1376 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Engineering, Center of Excellence on Catalysis and Catalytic Reaction EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Chemistry Program, Faculty of Science and Technology, Research Center of Natural Materials and ProductsNakhon Pathom Rajabhat UniversityMuangThailand

Personalised recommendations