Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3197–3211 | Cite as

Preparation of Square-Shaped Starch Nanocrystals/Polylactic Acid Based Bio-nanocomposites: Morphological, Structural, Thermal and Rheological Properties

  • Pooja Takkalkar
  • Mahalaxmi Ganapathi
  • Chaitali Dekiwadia
  • Sabzoi Nizamuddin
  • Gregory Griffin
  • Nhol KaoEmail author
Original Paper

Abstract

The development of low-cost bio-nanocomposites based on square-shaped starch nanocrystals (SNCs) is a promising approach for maintaining environmental sustainability. This study reports on a method for the preparation of bio-nanocomposites from polylactic acid (PLA) and SNC derived from acid hydrolysis of waxy maize starch. PLA–SNC bio-nanocomposites were prepared by incorporating SNC at 1, 3 and 5 wt% by dispersing them in PLA matrix using dichloromethane as a solvent. Morphological, thermal, crystalline and rheological properties of neat PLA, neat SNC and PLA–SNC bio-nanocomposites have been investigated to observe the effect of SNC loading. SNC loading at 3 wt% was found to be the optimum loading to improve the storage modulus, complex dynamic viscosity, and crystallinity, while 5 wt% loading caused agglomerations which led to a decrease in the above properties. Thermogravimetric analysis result suggested that both the SNC and PLA–SNC bio-nanocomposites were thermally stable from 25 to 240 °C. Electron microscopy study showed the effective dispersion of SNC in PLA.

Keywords

Starch nanocrystals Polylactic acid Bio-nanocomposites Rheology Thermal properties 

Supplementary material

12649_2018_372_MOESM1_ESM.docx (79 kb)
Supplementary material 1 (DOCX 79 KB)

References

  1. 1.
    Bajwa, D.S., Bajwa, S.G., Holt, G., Srinivasan, R., Coffelt, T., Nakayama, F., Gesch, R.: Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites. Waste Biomass Valoriz. 5(4), 709–714 (2014).  https://doi.org/10.1007/s12649-013-9263-6 CrossRefGoogle Scholar
  2. 2.
    Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., Kenny, J.M.: Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr. Polym. 90(2), 948–956 (2012).  https://doi.org/10.1016/j.carbpol.2012.06.025 CrossRefGoogle Scholar
  3. 3.
    Raquez, J.-M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38(10–11), 1504–1542 (2013).  https://doi.org/10.1016/j.progpolymsci.2013.05.014 CrossRefGoogle Scholar
  4. 4.
    Bouthegourd, E., Rajisha, K., Kalarical, N., Saiter, J.M., Thomas, S.: Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater. Lett. 65(23–24), 3615–3617 (2011)CrossRefGoogle Scholar
  5. 5.
    Condes, M.C., Anon, M.C., Mauri, A.N., Dufresne, A.: Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocoll. 47, 146–157 (2015).  https://doi.org/10.1016/j.foodhyd.2015.01.026 CrossRefGoogle Scholar
  6. 6.
    Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q.: Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym. 121, 155–162 (2015).  https://doi.org/10.1016/j.carbpol.2014.12.040 CrossRefGoogle Scholar
  7. 7.
    Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I., Goyanes, S.: Physico-mechanical properties of biodegradable starch nanocomposites. Macromol. Mater. Eng. 294(3), 169–177 (2009).  https://doi.org/10.1002/mame.200800271 CrossRefGoogle Scholar
  8. 8.
    Yu, J., Ai, F., Dufresne, A., Gao, S., Huang, J., Chang, P.R.: Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε -caprolactone). Macromol. Mater. Eng. 293(9), 763–770 (2008).  https://doi.org/10.1002/mame.200800134 CrossRefGoogle Scholar
  9. 9.
    Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., Berglund, L.A., Kenny, J.M.: Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym. 87(2), 1596–1605 (2012).  https://doi.org/10.1016/j.carbpol.2011.09.066 CrossRefGoogle Scholar
  10. 10.
    Madhavan Nampoothiri, K., Nair, N.R., John, R.P.: An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101(22), 8493–8501 (2010).  https://doi.org/10.1016/j.biortech.2010.05.092 CrossRefGoogle Scholar
  11. 11.
    Le Corre, D., Bras, J., Dufresne, A.: Starch nanoparticles: a review. Biomacromolecules 11(5), 1139–1153 (2010).  https://doi.org/10.1021/bm901428y CrossRefGoogle Scholar
  12. 12.
    Yin, Z., Zeng, J., Wang, C., Pan, Z.: Preparation and properties of cross-linked starch nanocrystals/polylactic acid nanocomposites. Int. J. Polym. Sci. (2015).  https://doi.org/10.1155/2015/454708 CrossRefGoogle Scholar
  13. 13.
    Luzi, F., Fortunati, E., Di Michele, A., Pannucci, E., Botticella, E., Santi, L., Kenny, J.M., Torre, L., Bernini, R.: Nanostructured starch combined with hydroxytyrosol in poly(vinyl alcohol) based ternary films as active packaging system. Carbohydr. Polym. 193, 239–248 (2018).  https://doi.org/10.1016/j.carbpol.2018.03.079 CrossRefGoogle Scholar
  14. 14.
    Espino-Pérez, E., Gilbert, R.G., Domenek, S., Brochier-Salon, M.C., Belgacem, M.N., Bras, J.: Nanocomposites with functionalised polysaccharide nanocrystals through aqueous free radical polymerisation promoted by ozonolysis. Carbohydr. Polym. 135, 256–266 (2016).  https://doi.org/10.1016/j.carbpol.2015.09.005 CrossRefGoogle Scholar
  15. 15.
    Garcia, N.L., Lamanna, M., D’Accorso, N., Dufresne, A., Aranguren, M., Goyanes, S.: Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polym. Degrad. Stab. 97(10), 2021–2026 (2012).  https://doi.org/10.1016/j.polymdegradstab.2012.03.032 CrossRefGoogle Scholar
  16. 16.
    Gao, H., Hu, S., Su, F., Zhang, J., Tang, G.: Mechanical, thermal, and biodegradability properties of PLA/modified starch blends. Polym. Compos. 32(12), 2093–2100 (2011).  https://doi.org/10.1002/pc.21241 CrossRefGoogle Scholar
  17. 17.
    Garcia, N.L., Fama, L., D’Accorso, N.B., Goyanes, S.: Biodegradable starch nanocomposites. In: Thakur, K.V., Thakur, K.M. (eds.) Eco-friendly Polymer Nanocomposites: Processing and Properties, vol. 75, pp. 17–77. Springer, New Delhi (2015)CrossRefGoogle Scholar
  18. 18.
    Rajisha, K., Maria, H., Pothan, L., Ahmad, Z., Thomas, S.: Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int. J. Biol. Macromol. 67, 147–153 (2014)CrossRefGoogle Scholar
  19. 19.
    Visakh, P.M., Thomas, S.: Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valoriz. 1(1), 121–134 (2010).  https://doi.org/10.1007/s12649-010-9009-7 CrossRefGoogle Scholar
  20. 20.
    Tikapunya, T., Zou, W., Yu, W., Powell, P.O., Fox, G.P., Furtado, A., Henry, R.J., Gilbert, R.G.: Molecular structures and properties of starches of Australian wild rice. Carbohydr. Polym. 172, 213–222 (2017).  https://doi.org/10.1016/j.carbpol.2017.05.046 CrossRefGoogle Scholar
  21. 21.
    LeCorre, D., Bras, J., Dufresne, A.: Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanopart. Res. 13(12), 7193–7208 (2011).  https://doi.org/10.1007/s11051-011-0634-2 CrossRefGoogle Scholar
  22. 22.
    Liu, D., Wu, Q., Chen, H., Chang, P.R.: Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339(1), 117–124 (2009).  https://doi.org/10.1016/j.jcis.2009.07.035 CrossRefGoogle Scholar
  23. 23.
    Shi, A., Li, D., Wang, L., Li, B., Adhikari, B.: Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr. Polym. 83(4), 1604–1610 (2011).  https://doi.org/10.1016/j.carbpol.2010.10.011 CrossRefGoogle Scholar
  24. 24.
    Le Corre, D., Vahanian, E., Dufresne, A., Bras, J.: Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules. 13(1), 132 (2011).  https://doi.org/10.1021/bm201333k CrossRefGoogle Scholar
  25. 25.
    Sun, Q., Gong, M., Li, Y., Xiong, L.: Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohydr. Polym. 111, 133–138 (2014).  https://doi.org/10.1016/j.carbpol.2014.03.094 CrossRefGoogle Scholar
  26. 26.
    Singh, V., Ali, S.Z.: Acid degradation of starch. The effect of acid and starch type. Carbohydr. Polym. 41(2), 191–195 (2000).  https://doi.org/10.1016/S0144-8617(99)00086-7 CrossRefGoogle Scholar
  27. 27.
    Jayakody, J.A.L.P.: The effect of acid hydrolysis on granular morphology and physicochemical properties of native cereal starch granules. Memorial University of Newfoundland (2001)Google Scholar
  28. 28.
    Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., Dufresne, A.: Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5(4), 1545–1551 (2004).  https://doi.org/10.1021/bm049914u CrossRefGoogle Scholar
  29. 29.
    Le Corre, D., Bras, J., Choisnard, L., Dufresne, A.: Optimization of the batch preparation of starch nanocrystals to reach daily time-scale. Starch - Stärke 64(6), 489–496 (2012).  https://doi.org/10.1002/star.201100145 CrossRefGoogle Scholar
  30. 30.
    Mohammad Amini, A., Razavi, S.M.A.: A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocoll. 57, 132–138 (2016).  https://doi.org/10.1016/j.foodhyd.2016.01.022 CrossRefGoogle Scholar
  31. 31.
    Sungsanit, K., Kao, N., Bhattacharya, S., Pivsaart, S.: Physical and rheological properties of plasticized linear and branched PLA. Korea–Aust. Rheol. J. 22(3), 187–195 (2010)Google Scholar
  32. 32.
    Murariu, M., Dechief, A.-L., Ramy-Ratiarison, R., Paint, Y., Raquez, J.-M., Dubois, P.: Recent advances in production of poly(lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites 1(2), 71–82 (2015)CrossRefGoogle Scholar
  33. 33.
    Turner, J., Riga, A., O’Connor, A., Zhang, J., Collis, J.: Characterization of drawn and undrawn poly-l-lactide films by differential scanning calorimetry. J. Therm. Anal. Calorim. 75(1), 257–268 (2004)CrossRefGoogle Scholar
  34. 34.
    Mathew, A.P., Oksman, K., Sain, M.: The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci. 101(1), 300–310 (2006).  https://doi.org/10.1002/app.23346 CrossRefGoogle Scholar
  35. 35.
    Bel Haaj, S., Thielemans, W., Magnin, A., Boufi, S.: Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr. Polym. 143, 310 (2016).  https://doi.org/10.1016/j.carbpol.2016.01.061 CrossRefGoogle Scholar
  36. 36.
    Li, W., Corke, H., Beta, T.: Kinetics of hydrolysis and changes in amylose content during preparation of microcrystalline starch from high-amylose maize starches. Carbohydr. Polym. 69(2), 398–405 (2007)CrossRefGoogle Scholar
  37. 37.
    Jayakody, L., Hoover, R.: The effect of lintnerization on cereal starch granules. Food Res. Int. 35(7), 665–680 (2002)CrossRefGoogle Scholar
  38. 38.
    LeCorre, D., Bras, J., Dufresne, A.: Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr. Polym. 87(1), 658–666 (2012).  https://doi.org/10.1016/j.carbpol.2011.08.042 CrossRefGoogle Scholar
  39. 39.
    Zhang, Z., Zhao, S., Xiong, S.: Physicochemical properties of Indica rice starch modified by mechanical activation and octenyl succinic anhydride. Starch - Stärke (2017).  https://doi.org/10.1002/star.201600008 CrossRefGoogle Scholar
  40. 40.
    Putaux, J.-L., Molina-Boisseau, S., Momaur, T., Dufresne, A.: Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4(5), 1198 (2003)CrossRefGoogle Scholar
  41. 41.
    Condés, M.C., Añón, M.C., Dufresne, A., Mauri, A.N.: Composite and nanocomposite films based on Amaranth biopolymers. Food Hydrocoll. 74(Supplement C), 159–167 (2018).  https://doi.org/10.1016/j.foodhyd.2017.07.013 CrossRefGoogle Scholar
  42. 42.
    Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H., Li, X.: In: Tester, R.F. (ed.), Thermal Degradation and Stability of Starch Under Different Processing Conditions, vol. 65. pp. 48–60. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2013)Google Scholar
  43. 43.
    Jiang, D.D., Yao, Q., McKinney, M.A., Wilkie, C.A.: TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stab. 63(3), 423–434 (1999)CrossRefGoogle Scholar
  44. 44.
    Lin, N., Yu, J., Chang, P., Li, J., Huang, J.: Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym. Compos. 32(3), 472–482 (2011)CrossRefGoogle Scholar
  45. 45.
    Mukherjee, T., Kao, N., Gupta, R., Quazi, N., Bhattacharya, S.: Evaluating the state of dispersion on cellulosic biopolymer by rheology. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43200Google Scholar
  46. 46.
    Nasseri, R., Mohammadi, N.: Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr. Polym. (2014).  https://doi.org/10.1016/j.carbpol.2014.01.029 CrossRefGoogle Scholar
  47. 47.
    Galkin, O., Vekilov, P.G.: Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state. J. Mol. Biol. 336(1), 43–59 (2004).  https://doi.org/10.1016/j.jmb.2003.12.019 CrossRefGoogle Scholar
  48. 48.
    Narimissa, E., Gupta, R.K., Choi, H.J., Kao, N., Jollands, M.: Morphological, mechanical, and thermal characterization of biopolymer composites based on polylactide and nanographite platelets. Polym. Compos. 33(9), 1505–1515 (2012).  https://doi.org/10.1002/pc.22280 CrossRefGoogle Scholar
  49. 49.
    Lin, N., Huang, J., Chang, P.R., Feng, J., Yu, J.: Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011).  https://doi.org/10.1016/j.carbpol.2010.10.047 CrossRefGoogle Scholar
  50. 50.
    Mukherjee, T., Czaka, M., Kao, N., Gupta, R.K., Choi, H.J., Bhattacharya, S.: Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. Carbohydr. Polym. 102, 537–542 (2014).  https://doi.org/10.1016/j.carbpol.2013.11.047 CrossRefGoogle Scholar
  51. 51.
    Mukherjee, T., Sani, M., Kao, N., Gupta, R.K., Quazi, N., Bhattacharya, S.: Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem. Eng. Sci. 101, 655–662 (2013).  https://doi.org/10.1016/j.ces.2013.07.032 CrossRefGoogle Scholar
  52. 52.
    Lin, N., Chen, G., Huang, J., Dufresne, A., Chang, P.R.: Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J. Appl. Polym. Sci. 113(5), 3417–3425 (2009).  https://doi.org/10.1002/app.30308 CrossRefGoogle Scholar
  53. 53.
    Chen, X., Kalish, J., Hsu, S.L.: Structure evolution of α′-phase poly(lactic acid). J. Polym. Sci. B 49(20), 1446–1454 (2011).  https://doi.org/10.1002/polb.22327 CrossRefGoogle Scholar
  54. 54.
    Furuhashi, Y., Yoshie, N.: Stereocomplexation of solvent-cast poly(lactic acid) by addition of non-solvents. Polym. Int. 61(2), 301–306 (2012).  https://doi.org/10.1002/pi.3190 CrossRefGoogle Scholar
  55. 55.
    Chen, Y., Cao, X., Chang, P.R., Huneault, M.A.: Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym. 73(1), 8–17 (2008).  https://doi.org/10.1016/j.carbpol.2007.10.015 CrossRefGoogle Scholar
  56. 56.
    Gonzalez, K., Retegi, A., Gonzalez, A., Eceiza, A., Gabilondo, N.: Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr. Polym. 117, 83–90 (2015).  https://doi.org/10.1016/j.carbpol.2014.09.055 CrossRefGoogle Scholar
  57. 57.
    Arrieta, M.P., Fortunati, E., Dominici, F., Rayón, E., López, J., Kenny, J.M.: Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr. Polym. 107, 16–24 (2014)CrossRefGoogle Scholar
  58. 58.
    Das, K., Ray, D., Banerjee, I., Bandyopadhyay, N., Sengupta, S., Mohanty, A.K., Misra, M.: Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties. J. Appl. Polym. Sci. 118(1), 143–151 (2010)CrossRefGoogle Scholar
  59. 59.
    Agustin, M.B., Ahmmad, B., Alonzo, S.M.M., Patriana, F.M.: Bioplastic based on starch and cellulose nanocrystals from rice straw. J. Reinf. Plast. Compos. 33(24), 2205–2213 (2014).  https://doi.org/10.1177/0731684414558325 CrossRefGoogle Scholar
  60. 60.
    Fortunati, E., Luzi, F., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L.: Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind. Crops Prod. 67, 439–447 (2015).  https://doi.org/10.1016/j.indcrop.2015.01.075 CrossRefGoogle Scholar
  61. 61.
    Frone, A.N., Berlioz, S., Chailan, J.-F., Panaitescu, D.M.: Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohydr. Polym. 91(1), 377–384 (2013).  https://doi.org/10.1016/j.carbpol.2012.08.054 CrossRefGoogle Scholar
  62. 62.
    Krishnamachari, P., Zhang, J., Lou, J., Yan, J., Uitenham, L.: Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: a study of morphological, thermal, and mechanical properties. Int. J. Polym. Anal. Charact. 14(4), 336–350 (2009)CrossRefGoogle Scholar
  63. 63.
    Arias, A., Heuzey, M.-C., Huneault, M.A., Ausias, G., Bendahou, A.: Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose 22(1), 483–498 (2015)CrossRefGoogle Scholar
  64. 64.
    Sungsanit, K., Kao, N., Bhattacharya, S.: Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52(1), 108–116 (2012)CrossRefGoogle Scholar
  65. 65.
    Sullivan, E., Moon, R., Kalaitzidou, K.: Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8(12), 8106–8116 (2015).  https://doi.org/10.3390/ma8125447 CrossRefGoogle Scholar
  66. 66.
    Hu, F., Lin, N., Chang, P.R., Huang, J.: Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr. Polym. 129, 208–215 (2015)CrossRefGoogle Scholar
  67. 67.
    Reinsch, V.E., Kelley, S.S.: Crystallization of poly(hydroxybutyrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J. Appl. Polym. Sci. 64(9), 1785–1796 (1997). 10.1002/(SICI)1097-4628(19970531)64:9<1785::AID-APP15>3.0.CO;2-XCrossRefGoogle Scholar
  68. 68.
    Fortunati, E., Armentano, I., Zhou, Q., Puglia, D., Terenzi, A., Berglund, L.A., Kenny, J.M.: Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym. Degrad. Stab. 97(10), 2027–2036 (2012).  https://doi.org/10.1016/j.polymdegradstab.2012.03.027 CrossRefGoogle Scholar
  69. 69.
    Pei, A., Zhou, Q., Berglund, L.A.: Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos. Sci. Technol. 70(5), 815–821 (2010).  https://doi.org/10.1016/j.compscitech.2010.01.018 CrossRefGoogle Scholar
  70. 70.
    Li, H., Cao, Z., Wu, D., Tao, G., Zhong, W., Zhu, H., Qiu, P., Liu, C.: Crystallisation, mechanical properties and rheological behaviour of PLA composites reinforced by surface modified microcrystalline cellulose. Plast. Rubber Compos. 45(4), 181–187 (2016).  https://doi.org/10.1179/1743289815Y.0000000040 CrossRefGoogle Scholar
  71. 71.
    Gupta, A., Simmons, W., Schueneman, G.T., Hylton, D., Mintz, E.A.: Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain. Chem. Eng. 5(2), 1711–1720 (2017).  https://doi.org/10.1021/acssuschemeng.6b02458 CrossRefGoogle Scholar
  72. 72.
    Hatzikiriakos, S.G., Rathod, N., Muliawan, E.B.: The effect of nanoclays on the processibility of polyolefins. Polym. Eng. Sci. 45(8), 1098–1107 (2005).  https://doi.org/10.1002/pen.20388 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Pooja Takkalkar
    • 1
  • Mahalaxmi Ganapathi
    • 1
  • Chaitali Dekiwadia
    • 1
  • Sabzoi Nizamuddin
    • 1
  • Gregory Griffin
    • 1
  • Nhol Kao
    • 1
    Email author
  1. 1.Department of Chemical Engineering, School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations