Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3535–3543 | Cite as

Coir Fibers as Valuable Raw Material for Biofuel Pellet Production

  • Wolfgang StelteEmail author
  • Søren T. Barsberg
  • Craig Clemons
  • João Paulo Saraiva Morais
  • Morsyleide de Freitas Rosa
  • Anand R. Sanadi
Original Paper


Coir is a natural, lignin rich, fiber that can be found between the hard internal shell and the outer coat of a coconut. There are multiple products made from coir fibers but a significant amount of fibers accumulating from coconut processing remains unutilized. Coir fibers obtained from ripe (brown fibers) and unripe (white fibers) have a high lignin content about 41–42 wt%, a low ash content < 15 wt% and a high heating value of about 18.5–19 MJ kg−1. The pelletizing properties were studied in a laboratory scale, single pellet press, and produced pellets were of high mechanical properties. Dynamic mechanical thermal analysis was used to identify the glass transition temperature of coir lignin and indicated that at the applied conditions the softening of coir lignin occurs at about 120–130 °C, which is the usual temperature reached in an industrial scale pellet mill. These properties make coir a suitable raw material for fuel pellet production. Its high availability makes coir fibers a potential replacement for firewood and charcoal in developing countries, and thereby contributes to reduce deforestation.


Coir Pellets Biofuel Lignin Heating value Glass transition temperature 


  1. 1.
    Food and Agriculture Organization of the United Nations, FAOSTAT database. Accessed 20 Sept 2017
  2. 2.
    Harish, D., Michael, P., Bensely, A., Mohan Lal, D., Rajadurai, A.: Mechanical property evaluation of natural fiber coir composite. Mater. Charact. 60(1), 44–49 (2009)Google Scholar
  3. 3.
    Van Dam, J.E.G.: Coir processing technologies, improvement of drying, softening bleaching and dyeing coir fibre/yarn and printing coir floor coverings. Technical paper No. 6. Food and Agricultural Organization of the United Nations, New York (2002)Google Scholar
  4. 4.
    Shree, M.A., Iyappan, K., Srinivasakannan, C.: Preparation and characterization of bio fuel from industrial waste. J. Sustain. Dev. 2(1), 71–74 (2009)Google Scholar
  5. 5.
    Moir, B.: Coir globally: status and perspectives. In: Proceeding of International Coir Convention, Colombo, Sri Lanka (2002)Google Scholar
  6. 6.
    Eldho, A., Deepa, B., Pothen, L.A., Cintil, J., Thomas, S., John, M.J., Anandjiwala, R., Narine, S.S.: Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr. Polym. 92(2), 1477–1483 (2012)Google Scholar
  7. 7.
    Gu, H.: Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 30(9), 3931–3934 (2009)Google Scholar
  8. 8.
    Wang, W., Gu, H.: Characterisation and utilization of natural coconut fibres composites. Mater. Des. 30(7), 2741–2744 (2009)Google Scholar
  9. 9.
    Evans, M.R., Konduru, S., Stamps, R.H.: Source variation in physical and chemical properties of coconut coir dust. HortScience 31(6), 965–967 (1996)Google Scholar
  10. 10.
    Stelte, W., Sanadi, A.R., Shang, L., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B.: Recent developments in biomass pelletizationa review. Bioresources 7(3), 4451–4490 (2013)Google Scholar
  11. 11.
    Obernberger, I., Thek, G.: The Pellet Handbook: the Production and Thermal Utilisation of Pellets. Earthscan, Routledge (2010)Google Scholar
  12. 12.
    Kumari, S., Singal, S.: Use of clean green fuel energy from biomass in rural households of Haryana (India). In: 20th European Biomass Conference and Exhibition, Milan, Italy, 18–22 June 2012Google Scholar
  13. 13.
    Reed, T.B., Larson, R.: A wood-gas stove for developing countries. Energ. Sustain. Dev. 3, 34–37 (1996)Google Scholar
  14. 14.
    Ramadhas, A.S., Jayaraj, S., Muraleedharan, C.: Power generation using coir-pith and wood derived producer gas in diesel engines. Fuel Process. Technol. 87(10), 849–853 (2006)Google Scholar
  15. 15.
    Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., Henriksen, U.B.: A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenerg. 35(2), 910–918 (2011)Google Scholar
  16. 16.
    van Dam, J.E.G., van den Oever, M.J.A., Keijsers, E.R.P., van der Putten, J.V., Anayron, C., Josol, F., Peralta, A.: Process for production of high density/high performance binderless boards from whole coconut husk: part 2: coconut husk morphology, composition and properties. Ind. Crop Prod. 24(2), 96–104 (2006)Google Scholar
  17. 17.
    van Dam, J.E.G., van den Oever, M.J.A., Teunissen, W., Keijsers, E.R.P., Peralta, A.G.: Process for production of high density/high performance binderless boards from whole coconut husk: part 1: lignin as intrinsic thermosetting binder resin. Ind. Crop Prod. 19(3), 207–216 (2006)Google Scholar
  18. 18.
    Corradini, E., de Freitas Rosa, M., de Macedo, B.P., Paladin, P.D., Mattoso, L.H.C.: Chemical composition, thermal and mechanical properties for cultivars of immature coconut fibers. Rev. Bras. Frutic. 31(3), 837–846 (2009)Google Scholar
  19. 19.
    Satyanarayana, K.G., Guimarães, J.L., Wypych, F.: Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Composites A 38(7), 1694–1709 (2007)Google Scholar
  20. 20.
    Silva, G.G., De Souza, D.A., Machado, J.C., Hourston, D.J.: Mechanical and thermal characterization of native Brazilian coir fiber. J. Appl. Polym. Sci. 76(7), 1197–1206 (2000)Google Scholar
  21. 21.
    Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., Henriksen, U.B.A.: Study of bonding and failure mechanism in fuel pellets produced from different biomass resources. Biomass Bioenerg. 35(2), 910–918 (2011)Google Scholar
  22. 22.
    Stelte, W., Dahl, J., Nielsen, N.P.K., Hansen, H.O.: Densification concepts for torrefied biomass. In: 20th European Biomass Conference and Exhibition, Milan, Italy, 18–22 June 2012Google Scholar
  23. 23.
    Aguira, M.J.N., de Lima, J.B., Barreto, J.H.C., Carneiro, F.A., Badu, F.O.: Dados climatológicos: Estação de Paraipaba 2001. Embrapa Agroindústria 59, 25 (2002)Google Scholar
  24. 24.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618, Version 07-08-2011, National Renewable Energy Laboratory, Golden, Colorado (2004)Google Scholar
  25. 25.
    Kristensen, J.B., Thygesen, L.G., Felby, C., Jorgensen, H., Elder, T.: Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol. Biofuels 1(1), 1–9 (2000)Google Scholar
  26. 26.
    Stelte, W., Nielsen, N.P.K., Hansen, H.O., Dahl, J., Shang, L., Sanadi, A.R.: Reprint of: Pelletizing properties of torrefied wheat straw. Biomass Bioenerg. 53, 105–112 (2013)Google Scholar
  27. 27.
    Rudolfsson, M., Stelte, W., Lestander, T.A.: Process optimization of combined biomass torrefaction and pelletization for fuel pellet production—A parametric study. Appl. Energ. 140, 378–384 (2015)Google Scholar
  28. 28.
    Leaver, R.H.: Wood pellet fuel and the residential market. In: Proceedings of the Ninth Biennial Bioenergy Conference, Bioenergy (2000)Google Scholar
  29. 29.
    Nielsen, N.P.K., Gardner, D.J., Poulsen, T., Felby, C.: Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood Fiber Sci. 41(4), 414–425 (2009)Google Scholar
  30. 30.
    Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., Sanadi, A.R.: Thermal transitions of the amorphous polymers in wheat straw. Ind. Crop Prod. 34(1), 1053–1056 (2011)Google Scholar
  31. 31.
    Merk, S., Blume, A., Riederer, M.: Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta 204(1), 44–53 (1997)Google Scholar
  32. 32.
    Pandey, K.K.: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 71(12), 1969–1975 (1999)Google Scholar
  33. 33.
    Faix, O.: Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45(1), 21–28 (1991)Google Scholar
  34. 34.
    Stewart, D.H., Wilson, M., Hendra, P.J., Morrison, I.M.: Fourier-transform infrared and Raman spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and barley (Hordeum vulgare) straw. J. Agric. Food Chem. 43(8), 2219–2225 (1995)Google Scholar
  35. 35.
    Shang, L., Nielsen, N.P.K., Stelte, W., Dahl, J., Ahrenfeldt, J., Holm, J.K., Arnavat, M.P., Bach, L.S., Henriksen, U.B.: Lab and bench scale pelletization of torrefied wood chips—process optimization and pellet quality. Bioenerg. Res. 7(1), 87–94 (2014)Google Scholar
  36. 36.
    Yamaki, S., Kakiuchi, N.: Changes in hemicellulose-degrading enzymes during development and ripening of Japanese pear fruit. Plant Cell Physiol. 20(2), 301–309 (1979)Google Scholar
  37. 37.
    McCollum, T.G., Huber, D.J., Cantliffe, D.J.: Modification of polyuronides and hemicelluloses during muskmelon fruit softening. Physiol. Plant. 76(3), 303–308 (1989)Google Scholar
  38. 38.
    Demirbaş, A.: Calculation of higher heating values of biomass fuels. Fuel 76(5), 431–434 (1997)Google Scholar
  39. 39.
    Demirbaş, A.: Relationships between lignin contents and heating values of biomass. Energy Convers. Manag. 42(2), 183–188 (2001)Google Scholar
  40. 40.
    Olsson, A.M., Salmen, L.: The effect of lignin composition on the viscoelastic properties of wood. Nord. Pulp Pap. Res. J. 12(3), 140–144 (1997)Google Scholar
  41. 41.
    Salmen, L., Olsson, A.M.: Interaction between hemicellulose, lignin and cellulose: structure–property relationships. J Pulp Pap. Sci. 24(3), 99–103 (1998)Google Scholar
  42. 42.
    Salmen, L.: Viscoelastic properties of in situ lignin under water-saturated conditions. J. Mater. Sci. 19(9), 3090–3096 (1984)Google Scholar
  43. 43.
    Sugiyama, M., Obataya, E., Norimoto, M.: Viscoelastic properties of the matrix substance of chemically treated wood. J. Mater. Sci. 33(14), 3505–3510 (1998)Google Scholar
  44. 44.
    Sun, N., Das, S., Frazier, C.E.: Dynamic mechanical analysis of dry wood: linear viscoelastic response region and effects of minor moisture changes. Holzforschung 61(1), 28–33 (2007)Google Scholar
  45. 45.
    Stelte, W., Holm, J.K., Sanadi, A.R., Barsberg, S., Ahrenfeldt, J., Henriksen, U.B.: Fuel pellets from biomass: the importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 90(11), 3285–3290 (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Center for Bachelor of Engineering StudiesTechnical University of DenmarkBallerupDenmark
  2. 2.Biomass Science and Technology, Faculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
  3. 3.Forest Products LaboratoryUnited States Department of AgricultureMadisonUSA
  4. 4.Embrapa AlgodãoEmpresa Brasileira de Pesquisa AgropecuáriaCampina GrandeBrazil
  5. 5.Embrapa Agroindústria TropicalEmpresa Brasileira de Pesquisa AgropecuáriaFortalezaBrazil

Personalised recommendations