Waste and Biomass Valorization

, Volume 10, Issue 10, pp 2825–2835 | Cite as

Sustainable Synthesis of ZSM-5 Zeolite from Rice Husk Ash Without Addition of Solvents

  • Changquan Zhang
  • Suqin LiEmail author
  • Shanci Bao
Original Paper


The development of sustainable and environmentally friendly techniques for synthesizing zeolites has attracted much attention, as the use of solvents in the hydrothermal synthesis of zeolites is a major obstacle for realizing green and sustainable synthesis ways. As a solid waste, it still has a challenge for zeolites synthesis from rice husk ash by solvent-free method to increase its recovery rate and economic value. Our approach focused on reutilization of rice husk ash by converting it to ZSM-5 zeolite without employing solvents. The influence of TPABr/SiO2, Na2CO3·10H2O/SiO2 and synthesis time on ZSM-5 crystal growth and ZSM-5 zeolite properties were evaluated by various analytical methods. The results suggested that the optimal conditions of TPABr/SiO2, Na2CO3·10H2O/SiO2 and synthesis time for the ZSM-5 synthesis were 0.125, 0.3 and 72 h, respectively. Base on the optimal synthesis condition, the recovery rate of Si and Al were 98%, which were 70% compared with that of hydrothermal method. The synthesis process was solid phase conversion, Na2CO3·10H2O played key role in promoting hydrolysis and condensation of Si–O–Si and Si–O–Al bonds during synthesis process. The resultant ZSM-5 zeolite exhibited well-defined crystallinity and porosity, ZSM-5 aggregate particles possessed micro-/meso-porous structures. The BET surface area of synthetic ZSM-5 zeolite was 304 m2/g, comparable to hydrothermal synthetic ZSM-5 zeolite (320 m2/g). Overall, proposed synthetic route provides novel green alternative for the recovery of rice husk ash, further mitigating the environmental and health care concerns.


Rice husk ash ZSM-5 zeolite Solvent-free synthesis Waste recycling 


  1. 1.
    Prasertsan, S., Sajjakulnukit, B.: Biomass and biogas energy in Thailand: potential, opportunity and barriers. Renew. Energy 31, 599–610 (2006)CrossRefGoogle Scholar
  2. 2.
    Kumar, A., Priyadarshinee, R., Singha, S., et al.: Rice husk ash-based silica-supported iron catalyst coupled with Fenton-like process for the abatement of rice mill wastewater. Clean Technol. Environ. Policy 18, 2565 (2016). CrossRefGoogle Scholar
  3. 3.
    Nagrale, S.D., Hajare, H., Modak, P.R.: Utilization of rice husk ash. Int. J. Eng. Res. Appl. 2, 1–5 (2012)Google Scholar
  4. 4.
    Geraldo, R.H., Fernandes, L.F.R., Camarini, G.: Water treatment sludge and rice husk ash to sustainable geopolymer production. J. Clean. Prod. 149, 146–155 (2017)CrossRefGoogle Scholar
  5. 5.
    Mor, S., Chhoden, K., Ravindra, K.: Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J. Clean. Prod. 129, 673–680 (2016)CrossRefGoogle Scholar
  6. 6.
    Prasetyoko, D., Ramli, Z., Endud, S., Hamdan, H., Sulikowski, B.: Conversion of rice husk ash to zeolite beta. Waste Manag. 26, 1173–1179 (2006)CrossRefGoogle Scholar
  7. 7.
    Kamseu, E., Beleuk à Moungam, L.M., Cannio, M., Billong, N., Chaysuwan, D., Chinje Melo, U., Leonelli, C.: Substitution of sodium silicate with rice husk ash-NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J. Clean. Prod. 142, 3050–3060 (2017)CrossRefGoogle Scholar
  8. 8.
    Prasara-A, J., Gheewala, S.H.: Sustainable utilization of rice husk ash from power plants: a review. J. Clean. Prod. 167, 1020–1028 (2017)CrossRefGoogle Scholar
  9. 9.
    Mowla, O., Kennedy, E., Stockenhuber, M.: Hydroesterification of bio-oils over HZSM-5, BETA and Y zeolites. Clean Technol. Environ. Policy (2017). Google Scholar
  10. 10.
    Na, Y.K., Woo, S.I., Yu, J.L., Bae, J., Choi, W.C., Park, Y.K.: Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking. J. Mater. Sci. 51, 3735–3749 (2016)CrossRefGoogle Scholar
  11. 11.
    Hyun, S.H., Song, J.K., Kwak, B.I., Kim, J.H., Hong, S.A.: Synthesis of ZSM-5 zeolite composite membranes for CO2 separation. J. Mater. Sci. 34, 3095–3105 (1999)CrossRefGoogle Scholar
  12. 12.
    Luo, W., Yang, X.Y., Wang, Z.R., Huang, W.F., Chen, J.Y., Jiang, W., Wang, L.J., Cheng, X.W., Deng, Y.H., Zhao, D.Y.: Synthesis of ZSM-5 aggregates made of zeolite nanocrystals through a simple solvent-free method. Microporous Mesoporous Mater. 243, 112–118 (2017)CrossRefGoogle Scholar
  13. 13.
    Barakov, R., Shcherban, N., Yaremov, P., Gryn, S., Solomakha, V., Bezverkhyy, I., Kasian, N., Ilyin, V.: Low-temperature and alkali-free dual template synthesis of micro-mesoporous aluminosilicates based on precursors of zeolite ZSM-5. J. Mater. Sci. 51, 4002–4020 (2016)CrossRefGoogle Scholar
  14. 14.
    Jiang, Z., Yang, J., Ma, H., et al.: Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions. Clean Technol. Environ. Policy 18, 629 (2016). CrossRefGoogle Scholar
  15. 15.
    Wdowin, M., Franus, M., Panek, R., et al.: The conversion technology of fly ash into zeolites. Clean Technol. Environ. Policy 16, 1217 (2014). CrossRefGoogle Scholar
  16. 16.
    Remenárová, L., Pipíška, M., Florková, E., et al.: Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technol. Environ. Policy 16, 1551 (2014). CrossRefGoogle Scholar
  17. 17.
    Zhang, H.B., Ma, Y.C., Song, K.S., Zhang, Y.H., Tang, Y.: Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: effects of accessibility and strength of acid sites. J. Catal. 302, 115–125 (2013)CrossRefGoogle Scholar
  18. 18.
    Jia, Y., Wang, J., Zhang, K., Feng, W., Liu, S., Ding, C., Liu, P.: Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics. Microporous Mesoporous Mater. 247, 103–115 (2017)CrossRefGoogle Scholar
  19. 19.
    Wan, Z., Wu, W., Chen, W., Yang, H., Zhang, D.: Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion. Ind. Eng. Chem. Res. 53, 19471–19478 (2014)CrossRefGoogle Scholar
  20. 20.
    Xiao, F.S., Wang, L.F., Yin, C.Y., Lin, K.F., Di, Y., Li, J.X., Xu, R.R., Su, D.S., Schlogl, R., Yokoi, T., Tatsumi, T.: Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angew. Chem. Int. Ed. 45, 3090–3093 (2006)CrossRefGoogle Scholar
  21. 21.
    Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., Ryoo, R.: Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011)CrossRefGoogle Scholar
  22. 22.
    Wu, Q., Liu, X., Zhu, L., Ding, L., Gao, P., Wang, X., Pan, S., Bian, C., Meng, X., Xu, J., Deng, F., Maurer, S., Muller, U., Xiao, F.S.: Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 137, 1052–1055 (2015)CrossRefGoogle Scholar
  23. 23.
    Khoshbin, R., Karimzadeh, R.: The beneficial use of ultrasound in free template synthesis of nanostructured ZSM-5 zeolite from rice husk ash used in catalytic cracking of light naphtha: effect of irradiation power. Adv. Powder Technol. 28, 973–982 (2017)CrossRefGoogle Scholar
  24. 24.
    Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N., Kyritsi, A., Kasselouri-Rigopoulou, V.: Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater. 115, 189–196 (2008)CrossRefGoogle Scholar
  25. 25.
    Naskar, M.K., Kundu, D., Chatterjee, M.: A facile hydrothermal conversion of rice husk ash to ZSM-5 zeolite powders. J. Am. Ceram. Soc. 95, 925–930 (2012)CrossRefGoogle Scholar
  26. 26.
    Kordatos, K., Ntziouni, A., Iliadis, L., Kasselouri-Rigopoulou, V.: Utilization of amorphous rice husk ash for the synthesis of ZSM-5 zeolite under low temperature. J. Mater. Cycles Waste 15, 571–580 (2013)CrossRefGoogle Scholar
  27. 27.
    Dey, K.P., Ghosh, S., Naskar, M.K.: Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceram. Int. 39, 2153–2157 (2013)CrossRefGoogle Scholar
  28. 28.
    Sari, Z.G.L.V., Younesi, H., Kazemian, H.: Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source. Appl. Nanosci. 5, 737–745 (2015)CrossRefGoogle Scholar
  29. 29.
    Meng, X., Xiao, F.S.: Green routes for synthesis of zeolites. Chem. Rev. 114, 1521–1543 (2014)CrossRefGoogle Scholar
  30. 30.
    Zhang, P., Wang, L., Ren, L., Zhu, L., Sun, Q., Zhang, J., Meng, X., Xiao, F.S.: “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). J. Mater. Chem. 21, 12026–12033 (2011)CrossRefGoogle Scholar
  31. 31.
    Jin, Y., Sun, Q., Qi, G., Yang, C., Xu, J., Chen, F., Meng, X., Deng, F., Xiao, F.S.: Solvent-free synthesis of silicoaluminophosphate zeolites. Angew. Chem. Int. Ed. Engl. 52, 9172–9175 (2013)CrossRefGoogle Scholar
  32. 32.
    Wu, Q., Wang, X., Qi, G., Guo, Q., Pan, S., Meng, X., Xu, J., Deng, F., Fan, F., Feng, Z., Li, C., Maurer, S., Muller, U., Xiao, F.S.: Sustainable synthesis of zeolites without addition of both organotemplates and solvents. J. Am. Chem. Soc. 136, 4019–4025 (2014)CrossRefGoogle Scholar
  33. 33.
    Ren, L., Wu, Q., Yang, C., Zhu, L., Li, C., Zhang, P., Zhang, H., Meng, X., Xiao, F.S.: Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134, 15173–15176 (2012)CrossRefGoogle Scholar
  34. 34.
    Petkowicz, D.I., Canal, S., Finger, P.H., Mignoni, M.L., Santos, J.H.Z.D.: Synthesis of hybrid zeolites using a solvent-free method in the presence of different organosilanes. Microporous Mesoporous Mater. 241, 98–106 (2017)CrossRefGoogle Scholar
  35. 35.
    Cheng, S., Mazonde, B., Zhang, G., Javed, M., Dai, P., Cao, Y., Tu, S., Wu, J., Lu, C., Xing, C., Shan, S.: Co-based MOR/ZSM-5 composite zeolites over a solvent-free synthesis strategy for improving gasoline selectivity. Fuel 223, 354–359 (2018)CrossRefGoogle Scholar
  36. 36.
    Chevella, D., Mameda, N., Kodumuri, S., Banothu, R., Gajula, K.S., Kutepov, B.I., Nama, N.: Three-component synthesis of amidomethylarenes and -heteroarenes over Hβ zeolite under solvent-free conditions. Catal. Commun. 105, 20–25 (2018)CrossRefGoogle Scholar
  37. 37.
    Xiao, Y., Sheng, N., Chu, Y., Wang, Y., Wu, Q., Liu, X., Deng, F., Meng, X., Feng, Z.: Mechanism on solvent-free crystallization of NaA zeolite. Microporous Mesoporous Mater. 237, 201–209 (2017)CrossRefGoogle Scholar
  38. 38.
    Yu, Y., Xiong, G., Li, C., Xiao, F.S.: Characterization of aluminosilicate zeolites by UV Raman spectroscopy. Microporous Mesoporous Mater. 46, 23–34 (2001)CrossRefGoogle Scholar
  39. 39.
    Muller, D., Gessner, W., Behrens, H.J., Scheler, G.: Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27Al NMR. Chem. Phys. Lett. 79, 59–62 (1981)CrossRefGoogle Scholar
  40. 40.
    Perez-Ramirez, J., Verboekend, D., Bonilla, A., Abello, S.: Hierarchical zeolite catalysts: zeolite catalysts with tunable hierarchy factor by pore-growth moderators. Adv. Funct. Mater. 19, 3972–3979 (2009)CrossRefGoogle Scholar
  41. 41.
    Yue, Y.Y., Liu, H.Y., Yuan, P., Li, T.S., Yu, C.Z., Bi, H., Bao, X.J.: From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: a nanoscale depolymerization-reorganization approach. J. Catal. 319, 200–210 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations