Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 10, pp 3089–3100 | Cite as

Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment

  • Suelem Daiane Ferreira
  • Christian Manera
  • Wendel Paulo Silvestre
  • Gabriel Fernandes Pauletti
  • Carlos Roberto Altafini
  • Marcelo GodinhoEmail author
Original Paper

Abstract

This study was carried out to evaluate the agronomic potential of elephant grass biomass (Pennisetum purpureum Schum) biochar obtained through slow pyrolysis using a semi-continuous pilot screw reactor in the absence of a carrier gas, and under different conditions. The biomass was pyrolyzed with temperature ranging between 400 and 600 °C. The products (biogas/biochar/bio-oil) yields were evaluated. With increasing temperature, there was a decrease in biochar yield, however, the bio-oil yield was relatively constant. Different physicochemical properties of the biochar were evaluated, and the biochar was incubated in the soil for 60 days. After the incubation period the mixture of soil and biochar underwent analysis to determine soil fertility. The biochar produced presented an elevated content of micro and macronutrients, as well as high pH. Agronomic tests showed that biochar presented great potential to be used as an auxiliary liming agent, and as a fertilizer.

Keywords

Biochar Screw reactor Elephant grass Soil amendment 

Notes

Acknowledgements

The authors would like to thank the financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES – Brazil).

References

  1. 1.
    Chen, H., Zhai, Y., Xu, B., Xiang, B., Zhu, L., Qiu, L., Liu, X., Li, C., Zeng, G.: Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge. Environ. Technol. 36, 470–478 (2014)CrossRefGoogle Scholar
  2. 2.
    Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz. 7, 201–235 (2016)CrossRefGoogle Scholar
  3. 3.
    Kwapinski, W., Byrne, C.M.P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J.J., Novotny, E.H., Hayes, M.H.B.: Biochar from biomass and waste. Waste Biomass Valoriz. 1, 177–189 (2010)CrossRefGoogle Scholar
  4. 4.
    Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011)CrossRefGoogle Scholar
  5. 5.
    Wang, D., Zhang, W., Hao, X., Zhou, D.: Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ. Sci. Technol. 47, 821–828 (2013)CrossRefGoogle Scholar
  6. 6.
    Li, F., Cao, X., Zhao, L., Wang, J., Ding, Z.: Effects of mineral additives on biochar formation: carbon retention, stability, and properties. Environ. Sci. Technol. 48, 11211–11217 (2014)CrossRefGoogle Scholar
  7. 7.
    Vandecasteele, B., Reubens, B., Willekens, K., De Neve, S.: Composting for increasing the fertilizer value of chicken manure: effects of feedstock on P availability. Waste Biomass Valoriz. 5, 491–503 (2014)CrossRefGoogle Scholar
  8. 8.
    Omar, R., Robinson, J.P.: Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production. J. Anal. Appl. Pyrolysis 105, 131–142 (2014)CrossRefGoogle Scholar
  9. 9.
    Chang, K.-L., Chen, X.-M., Sun, J., Liu, J., Sun, S., Yang, Z., Wang, Y.: Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environ. Technol. 3330, 1–5 (2016)Google Scholar
  10. 10.
    Song, W., Guo, M.: Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94, 138–145 (2012)CrossRefGoogle Scholar
  11. 11.
    Rizwan, M.S., Imtiaz, M., Chhajro, M.A., Huang, G., Fu, Q., Zhu, J., Aziz, O., Hu, H.: Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environ. Technol. 37, 2679–2686 (2016)CrossRefGoogle Scholar
  12. 12.
    Yuan, J.H., Xu, R.K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102, 3488–3497 (2011)CrossRefGoogle Scholar
  13. 13.
    Demirbas, A.: Competitive liquid fuels from biomass. Appl. Energy 88, 17–28 (2011)CrossRefGoogle Scholar
  14. 14.
    Strezov, V., Evans, T.J., Hayman, C.: Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour. Technol. 99, 8394–8399 (2008)CrossRefGoogle Scholar
  15. 15.
    Menegol, D., Scholl, A.L., Fontana, R.C., Dillon, A.J.P., Camassola, M.: Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers. Manag. 88, 1252–1256 (2014)CrossRefGoogle Scholar
  16. 16.
    binti Ab Aziz, N.S., bin Mohd Nor, M.A., Hamzah, F.: Suitability of biochar produced from biomass waste as soil amendment. Proc. Soc. Behav. Sci. 195, 2457–2465 (2015)CrossRefGoogle Scholar
  17. 17.
    Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493 (2013)CrossRefGoogle Scholar
  18. 18.
    Saikia, R., Chutia, R.S., Kataki, R., Pant, K.K.: Perennial grass (Arundo donax l.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour. Technol. 188, 265–272 (2015)CrossRefGoogle Scholar
  19. 19.
    Irfan, M., Chen, Q., Yue, Y., Pang, R., Lin, Q., Zhao, X., Chen, H.: Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures. Bioresour. Technol. 211, 457–463 (2016)CrossRefGoogle Scholar
  20. 20.
    Shafie, S.M., Mahlia, T.M.I., Masjuki, H.H., Ahmad-Yazid, A.: A review on electricity generation based on biomass residue in Malaysia. Renew. Sust. Energy Rev. 16, 5879–5889 (2012)CrossRefGoogle Scholar
  21. 21.
    Verma, M., Godbout, S., Brar, S.K., Solomatnikova, O., Lemay, S.P., Larouche, J.P.: Biofuels production from biomass by thermochemical conversion technologies. Int. J. Chem. Eng. (2012).  https://doi.org/10.1155/2012/542426 Google Scholar
  22. 22.
    Bottomé, M.L., Poletto, P., Junges, J., Perondi, D., Dettmer, A., Godinho, M.: Preparation and characterization of a metal-rich activated carbon from CCA-treated wood for CO2 capture. Chem. Eng. J. 321, 614–621 (2017)CrossRefGoogle Scholar
  23. 23.
    Van Soest, P.J., Wine, R.H.: Determination of lignin and cellulose in acid detergent fiber with permanganate. J. AOAC 51, 780–785 (1968)Google Scholar
  24. 24.
    Ferreira, S.D., Altafini, C.R., Perondi, D., Godinho, M.: Pyrolysis of medium density fiberboard (MDF) wastes in a screw reactor. Energy Convers. Manag. 92, 223–233 (2015)CrossRefGoogle Scholar
  25. 25.
    Tedesco, M.J., Gianello, C., Bissani, C.A., Bonhen, H., Volkweiss, S.J.: Análises de solo, plantas e outros materiais. Boletim Técnico 5. Departamento de Solos, Porto Alegre (1995)Google Scholar
  26. 26.
    Lee, M., Tsai, W., Tsai, Y., Lin, S.: Pyrolysis of napier grass in an induction-heating reactor. J. Anal. Appl. Pyrolysis 88, 110–116 (2010)CrossRefGoogle Scholar
  27. 27.
    Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S.A.: Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)CrossRefGoogle Scholar
  28. 28.
    Juchelková, D., Corsaro, A., Hlavsová, A., Raclavská, H.: Effect of composting on the production of syngas during pyrolysis of perennial grasses. Fuel 154, 380–390 (2015)CrossRefGoogle Scholar
  29. 29.
    Greenhalf, C.E., Nowakowski, D.J., Harms, A.B., Titiloye, J.O., Bridgwater, A.V.: A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel 108, 216–230 (2013)CrossRefGoogle Scholar
  30. 30.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)CrossRefGoogle Scholar
  31. 31.
    Choudhury, N.D., Chutia, R.S., Bhaskar, T., Kataki, R.: Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J. Mater. Cycles Waste. Manag. 16, 449–459 (2014)CrossRefGoogle Scholar
  32. 32.
    Collard, F., Blin, J.: A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew. Sust. Energy Rev. 38, 594–608 (2014)CrossRefGoogle Scholar
  33. 33.
    Sirijanusorn, S., Sriprateep, K., Pattiya, A.: Pyrolysis of cassava rhizome in a counter-rotating twin screw reactor unit. Bioresour. Technol. 139, 343–348 (2013)CrossRefGoogle Scholar
  34. 34.
    Lin, B.-J., Chen, W.-H.: Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Front. Energy Res. 3, 1–9 (2015)Google Scholar
  35. 35.
    Encinar, J.M., González, J.F., González, J.: Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Process. Technol. 68, 209–222 (2000)CrossRefGoogle Scholar
  36. 36.
    Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J.: Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012)CrossRefGoogle Scholar
  37. 37.
    Kelly, C.N., Calderón, F.C., Acosta-martinez, V., Mikha, M.M., Benjamin, J., Rutherford, D.W., Rostad, C.E.: Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions. Pedosphere 25, 329–342 (2015)CrossRefGoogle Scholar
  38. 38.
    Brewer, C.E., Unger, R., Schmidt-rohr, K., Brown, R.C.: Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res. 4(4), 312–323 (2011)CrossRefGoogle Scholar
  39. 39.
    Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis 93, 170–177 (2012)CrossRefGoogle Scholar
  40. 40.
    Jendoubi, N., Broust, F., Commandre, J.M., Mauviel, G., Sardin, M., Lede, J.: Inorganics distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols. J. Anal. Appl. Pyrolysis 92, 59–67 (2011)CrossRefGoogle Scholar
  41. 41.
    Roberts, D.A., Cole, A.J., Paul, N.A., de Nys, R.: Algal biochar enhances the re-vegetation of stockpiled mine soils with native grass. J. Environ. Manag. 161, 173–180 (2015)CrossRefGoogle Scholar
  42. 42.
    Ahmad, M., Soo, S., Dou, X., Mohan, D., Sung, J., Yang, J.E.: Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544 (2012)CrossRefGoogle Scholar
  43. 43.
    Ghani, W.A.W.A.K., Mohd, A., da Silva, G., Bachmann, R.T., Taufiq-Yap, Y.H., Rashid, U., Al-Muhtaseb, A.H.: Biochar production from waste rubber-wood-sawdust and its potential use in C sequestration: chemical and physical characterization. Ind. Crops Prod. 44, 18–24 (2013)CrossRefGoogle Scholar
  44. 44.
    Spokas, K.A.: Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag. 1, 289–303 (2010)CrossRefGoogle Scholar
  45. 45.
    Peters, J., Iribarren, D., Dufour, J.: Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49, 5195–5202 (2015)CrossRefGoogle Scholar
  46. 46.
    Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N.: Biochar production, characterization and applications. CRC Press, New York (2015)CrossRefGoogle Scholar
  47. 47.
    Sparrevik, M., Field, J.L., Martinsen, V., Breedveld, G.D., Cornelissen, G.: Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia. Environ. Sci. Technol. 47, 1206–1215 (2013)CrossRefGoogle Scholar
  48. 48.
    Bordoloi, N., Narzari, R., Chutia, R.S., Bhaskar, T., Kataki, R.: Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour. Technol. 178, 83–89 (2015)CrossRefGoogle Scholar
  49. 49.
    Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A.: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374–379 (2013)CrossRefGoogle Scholar
  50. 50.
    Cely, P., Gascó, G., Paz-Ferreiro, J., Méndez, A.: Agronomic properties of biochars from different manure wastes. J. Anal. Appl. Pyrolysis 111, 173–182 (2015)CrossRefGoogle Scholar
  51. 51.
    Melorose, J., Perroy, R., Careas, S.: Implementation of the global efficiency equipment in the machining sector. Statew. Agric. Land Use Baseline 1, 163–172 (2015)Google Scholar
  52. 52.
    Jindo, K., Sonoki, T., Matsumoto, K., Canellas, L., Roig, A., Sanchez-Monedero, M.A.: Influence of biochar addition on the humic substances of composting manures. Waste Manag. 49, 545–552 (2015).  https://doi.org/10.1016/j.wasman.2016.01.007 CrossRefGoogle Scholar
  53. 53.
    Randolph, P., Bansode, R.R., Hassan, O.A., Rehrah, D., Ravella, R., Reddy, M.R., Watts, D.W., Novak, J.M., Ahmedna, M.: Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 192, 271–280 (2017).  https://doi.org/10.1016/j.jenvman.2017.01.061 CrossRefGoogle Scholar
  54. 54.
    Castellini, M., Giglio, L., Niedda, M., Palumbo, A.D., Ventrella, D.: Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 154, 1–13 (2015)CrossRefGoogle Scholar
  55. 55.
    Reverchon, F., Yang, H., Ho, T.Y., Yan, G., Wang, J., Xu, Z., Chen, C., Zhang, D.: A preliminary assessment of the potential of using an acacia—biochar system for spent mine site rehabilitation. Environ. Sci. Pollut. Res. 22, 2138–2144 (2015)CrossRefGoogle Scholar
  56. 56.
    Burrell, L.D., Zehetner, F., Rampazzo, N., Wimmer, B., Soja, G.: Long-term effects of biochar on soil physical properties. Geoderma 282, 96–102 (2016)CrossRefGoogle Scholar
  57. 57.
    Mukherjee, A., Lal, R.: Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3, 313–339 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Postgraduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Postgraduate Program in Engineering Processes and Technologies (PGEPROTEC)University of Caxias do Sul (UCS)Caxias do SulBrazil
  3. 3.Agronomy CourseUniversity of Caxias do Sul (UCS)Caxias do SulBrazil
  4. 4.Postgraduate Program in Mechanical Engineering (PPGMEC)University of Caxias do Sul (UCS)Caxias do SulBrazil

Personalised recommendations