Waste and Biomass Valorization

, Volume 10, Issue 11, pp 3343–3350 | Cite as

Lignin Removal from Tobacco Stem with Laccase Improved by Synergistic Action of Weak Alkali and Tween 80

  • Cheng Chen
  • Linfeng Jiang
  • Guanfeng Ma
  • Dongxue Jin
  • Lisha Zhao
  • Xinping OuyangEmail author
Original Paper


Lignin removal from lignocellulosic materials plays a great role in the utilization cellulose with high efficiency. In order to improve the quality of reconstituted tobacco sheet, lignin existed in tobacco stem was removed by enzymatic hydrolysis with laccase enhanced by weak alkali treatment together with the addition of Tween 80 into laccase treatment system. It is found that lignin was partially removed by laccase. The treatment of tobacco stem with NaHCO3 resulted in the dissolution of lignin, and hence increased the porosity and specific surface area of the pretreated tobacco stem. Consequently, laccase could access to the tobacco stem more completely. The surface activity and dispersion of Tween 80 improved laccase activity, solubilization of degraded products of lignin, and contact interface between laccase and tobacco stem. The synergistic action of laccase, weak alkali and Tween 80 improved the ratio of lignin removal significantly, reaching as high as 40.3%.

Graphical Abstract


Laccase Tobacco stem Lignin Alkali treatment Tween 80 



This work is financially supported by the National Natural Science Foundation of China (No. 21576104, 21776108, 21690083) and Science and Technology Program of Guangdong, China (2017B090903003).

Supplementary material

12649_2018_346_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 KB)


  1. 1.
    Kalogiannis, K.G., Stefanidis, S., Marianou, A., Michailof, C., Kalogianni, A., Lappas, A.: Lignocellulosic biomass fractionation as a pretreatment step for production of fuels and green chemicals. Waste Biomass Valor. 6, 781–790 (2015)CrossRefGoogle Scholar
  2. 2.
    Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J. Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., Tschaplinski, T.: The path forward for biofuels and biomaterials. Science 311, 484–489 (2006)CrossRefGoogle Scholar
  3. 3.
    Ghosh, R.K., Reddy, D.D.: Tobacco stem ash as an adsorbent for removal of methylene blue from aqueous solution: equilibrium, kinetics, and mechanism of adsorption. Water Air Soil Poll. 224, 1582–1593 (2013)CrossRefGoogle Scholar
  4. 4.
    Meng, A., Zhang, Y., Zhuo, J., Li, Q., Qin, L.: Investigation on pyrolysis and carbonization of Eupatorium adenophorum Spreng and tobacco stem. J. Energy Inst. 88, 480–489 (2015)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Chen, K., Mo, L., Li, J., Xu, J.: Optimization of coagulation–flocculation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. J. Ind. Eng. Chem. 20, 391–396 (2014)CrossRefGoogle Scholar
  6. 6.
    Zi, W., Peng, J., Zhang, X., Zhang, L., Liu, J.: Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology. J. Taiwan Inst. Chem. Eng. 44, 678–685 (2013)CrossRefGoogle Scholar
  7. 7.
    Xia, X., Liu, H., Shi, L., He, Y.: Tobacco stem-based activated carbons for high performance supercapacitors. J. Mater. Eng. Perform. 21, 1956–1961 (2012)CrossRefGoogle Scholar
  8. 8.
    Meng, A., Zhang, Y., Zhuo, J., Li, Q., Qin, L.: Investigation on pyrolysis and carbonization of Eupatorium adenophorum Spreng and tobacco stem. J. Energ. Inst. 88, 480–489 (2015)CrossRefGoogle Scholar
  9. 9.
    Li, W., Zhanq, L., Peng, J., Li, N., Zhang, S., Guo, S.: Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Ind. Crop. Product. 28, 294–302 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Wen, Y.B., Sun, D.P., Mao, Y., Yao, Y.J.: Study on the decrease of harmful substance in paper-process reconstituted tobacco sheet. Adv. Mater. Res. 314–316, 2338–2343 (2011)Google Scholar
  11. 11.
    Ranjithkumar, M., Ravikumar, R., Sankar, M.K., Kumar, M.N., Thanabal, V.: An effective conversion of cotton waste biomass to ethanol: a critical review on pretreatment processes. Waste Biomass Valor. 8, 57–68 (2017)CrossRefGoogle Scholar
  12. 12.
    Arenas-Cárdenas, P., López-López, A., Moeller-Chávez, G.E., León-Becerril, E.: Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valor. 8, 161–181 (2017)CrossRefGoogle Scholar
  13. 13.
    Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Tu, Y.: Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 183, 248–254 (2015)CrossRefGoogle Scholar
  14. 14.
    Senthivelan, T., Kanagaraj, J., Panda, R.C.: Recent trends in fungal laccase for various industrial applications: an eco-friendly approach—a review. Biotechnol. Bioprocess. Eng. 21, 19–38 (2016)CrossRefGoogle Scholar
  15. 15.
    Couto, S.R., Herrera, J.L.T.: Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24, 500–513 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhao, C., Xie, S., Pu, Y., Zhang, R., Huang, F., Ragauskas, A.J., Yuan, J.S.: Synergistic enzymatic and microbial lignin conversion. Green Chem. 18, 1306–1312 (2016)CrossRefGoogle Scholar
  17. 17.
    Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., Tanaka, T.: Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 100, 637–643 (2005)CrossRefGoogle Scholar
  18. 18.
    Tu, M., Saddler, J.N.: Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl. Biochem. Biotechnol. 161, 274–287 (2010)CrossRefGoogle Scholar
  19. 19.
    Azimi, M., Nafissi-Varcheh, N., Mogharabi, M., Faramarzi, M.A., Aboofazeli, R.: Study of laccase activity and stability in the presence of ionic andnon-ionic surfactants and the bioconversion of indole inlaccase-TX-100 system. J. Mol. Catal. B 126, 69–75 (2016)CrossRefGoogle Scholar
  20. 20.
    Galkin, M.V., Dahlstrand, C., Samec, J.S.: Mild and robust redox-neutral Pd/C-catalyzed lignol β-O-4′ bond cleavage through a low-energy-barrier pathway. ChemSusChem 8, 2187–2192 (2015)CrossRefGoogle Scholar
  21. 21.
    Peterson, M.E., Daniel, R.M., Danson, M.J., Eisenthal, R.: The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 402, 331–337 (2007)CrossRefGoogle Scholar
  22. 22.
    Hu, X., Wang, C., Wang, L., Zhang, R., Chen, H.: Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis. World J. Microb. Biotechnol. 30, 1285–1290 (2014)CrossRefGoogle Scholar
  23. 23.
    Munk, L., Sitarz, A.K., Kalyani, D.C., Mikkelsen, J.D., Meyer, A.S.: Can laccases catalyze bond cleavage in lignin? Biotechnol. Adv. 33, 13–24 (2015)CrossRefGoogle Scholar
  24. 24.
    Roth, S., Spiess, A.C.: Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess. Biosyst. Eng. 38, 2285–2313 (2015)CrossRefGoogle Scholar
  25. 25.
    Lei, M., Zhang, H., Zheng, H., Li, Y., Huang, H., Rong, X.: Characterization of lignins isolated from alkali treated prehydrolysate of corn stover. Chin. J. Chem. Eng. 21, 427–433 (2013)CrossRefGoogle Scholar
  26. 26.
    Zu, S., Li, W., Zhang, M., Li, Z., Wang, Z., Jameel, H., Chang, H.: Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime. Bioresour. Technol. 152, 364–370 (2014)CrossRefGoogle Scholar
  27. 27.
    Yuan, Z., Long, J., Wang, T., Shu, R., Zhang, Q., Ma, L.: Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Convers. Manag. 101, 481–488 (2015)CrossRefGoogle Scholar
  28. 28.
    Pavlostathis, S.G., Gossett, J.M.: Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol. Bioeng. 27, 334–344 (1985)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Zeng, Z., Zeng, G., Liu, X., Liu, Z., Chen, M., Liu, L., Li, J., Xie, G.: Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking. Colloid. Surf. B 97, 7–12 (2012)CrossRefGoogle Scholar
  30. 30.
    Escalante, M., Rodriguez-Malaver, A.J., Araujo, E., Gonzalez, A.M., Rojas, O.J., Penaloza, N., Bullon, J., Lara, M.A., Dmitrieva, N., Perez-Perez, E.: Effect of surfactants on Fenton’s reagent-mediated degradation of Kraft black liquor. J. Environ. Biol. 26, 709–718 (2005)Google Scholar
  31. 31.
    Ouyang, X., Lin, Z., Yang, D., Qiu, X.: Chemical modification of lignin assisted by microwave irradiation. Holzforschung 65, 697–701 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Cheng Chen
    • 1
  • Linfeng Jiang
    • 1
  • Guanfeng Ma
    • 1
  • Dongxue Jin
    • 1
  • Lisha Zhao
    • 1
  • Xinping Ouyang
    • 1
    Email author
  1. 1.School of Chemistry & Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product TechnologySouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations